OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 589–595
« Show journal navigation

Stable discrete surface light bullets

Dumitru Mihalache, Dumitru Mazilu, Falk Lederer, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 589-595 (2007)
http://dx.doi.org/10.1364/OE.15.000589


View Full Text Article

Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze spatiotemporal light localization near the edge of a semi-infinite array of weakly coupled nonlinear optical waveguides and demonstrate the existence of a novel class of continuous-discrete spatiotemporal solitons, the so-called discrete surface light bullets. We show that their properties are strongly affected by the presence of the surface. To this end the crossover between surface and quasi-bulk bullets is studied by analyzing the families of solitons propagating at different distances from the edge of the waveguide array.

© 2007 Optical Society of America

1. Introduction

Surface modes are regarded as a special type of waves propagating along and localized near an interface separating two different media. In optics, electromagnetic surface waves are known to exist in the linear limit as the waves localized at the interface separating either two homogeneous (one of them has to be surface-active, i.e., exhibits a negative permittivity, [1

1. G. Borstel and H. J. Falge, in: Electromagnetic SurfaceModes (ed. A. D. Boardman)219–248 (Wiley, Chichester, 1982).

]) or homogeneous and periodic dielectric media [2

2. P. Yeh, A. Yariv, and A.Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32,104–105 (1978).(1978). [CrossRef]

], while nonlinear dielectric media can support different types of nonlinear guided waves localized at or near the surfaces [3

3. D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27,229–313 (1989).

, 4

4. A.D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, “Third-order nonlinear electromagnetic TE and TM guided waves,” in: Nonlinear Surface Electromagnetic Phenomena,V.M. Agranovich, A.A. Maradudin, H.-E. Ponath, and G.I. Stegeman, eds. (Elsevier Science Publishers B.V., New York, 1991), pp.73–287.

]. Nonlinear guided waves in planar waveguides have been studied extensively about 20 years ago (see a series of the pioneering papers [5

5. W.J. Tomlinson, “Surface wave at a nonlinear interface,” Opt. Lett. 5,323–325 (1980) [CrossRef] [PubMed]

, 6

6. V.K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47,167 (1982). [CrossRef]

, 7

7. G.I. Stegeman, C.T. Seaton, J. Chilwell, and S.D. Smith, “Nonlinear waves guided by thin films,” Appl. Phys. Lett. 44,830–832 (1984). [CrossRef]

, 8

8. N.N. Akhmediev, V.I. Korneyev, and Y.V. Kuzmenko, “Excitation of nonlinear surface-waves by Gaussian light beams,” Zh. Eksp. Teor. Fiz. 88,107 (1985).

, 9

9. F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon-polaritons,” Solid State Commun. 59,151 (1986). [CrossRef]

] and references therein).

Recently, the interest in the study of electromagnetic surface waves has been renewed after the first theoretical prediction [10

10. K.G. Makris, S. Suntsov, D.N. Christodoulides, G.I. stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30,2466–2668 (2005). [CrossRef] [PubMed]

] and subsequent experimental demonstration [11

11. S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, A. Naché, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96,063901 (2006). [CrossRef] [PubMed]

] of nonlinearity-induced self-trapping of light near the edge of a one-dimensional waveguide array with self-focusing nonlinearity that can lead to the formation of a discrete surface soliton. A similar effect of light localization has been predicted theoretically and observed experimentally for defocusing nonlinear media [12

12. Ya.V. Kartashov, V.V. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96,073901 (2006). [CrossRef] [PubMed]

, 13

13. C.R. Rosberg, D.N. Neshev, W. Krolikowski, A. Mitchell, R.A. Vicencio, M.I. Molina, and Yu.S. Kivshar, “Observation of surface gap solitons,” Phys. Rev. Lett. 97,083901 (2006). [CrossRef] [PubMed]

], when the surface gap solitons can be regarded as an optical analog of nonlinear Tamm states [14

14. I.E. Tamm, “A possible kind of electron binding on crystal surfaces,” Z. Phys. 76,849–850 (1932). [CrossRef]

].

In this paper, we suggest an important extension of the concept of discrete surface solitons and initiate the study of a rich variety of the surface-mediated effects associated with spatiotemporal evolution of nonlinear surface waves and surface solitons. The study of optical spatiotemporal solitons, often referred to as light bullets in the three-dimensional case [15

15. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15,1282–1284 (1990). [CrossRef] [PubMed]

, 16

16. B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons”, J. Opt. B: Quantum Semiclass. Opt. 7, R53-R72 (2005). [CrossRef]

], has been attracted attention of many research groups as an unique opportunity to create a self-supporting fully localized object in space and time. In particular, the existence and properties of continuous-discrete spatiotemporal solitons have been extensively investigated in cubic [17

17. A.B. Aceves, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19,329–331 (1994). [CrossRef] [PubMed]

, 18

18. E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, “Stability of discrete solitons and quasicollapse to intrinsically localized modes,”Phys. Rev. Lett. 73,1055–1058 (1994). [CrossRef] [PubMed]

, 19

19. A.B. Aceves, G.G. Luther, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Energy localization in nonlinear fiber arrays: Collapse-effect compresor,” Phys. Rev. Lett. 75,73–76 (1995). [CrossRef] [PubMed]

, 20

20. A.B. Aceves, M. Santagiustina, and C. De Angelis, “Analytical study of nonlinear-optical pulse dynamics in arrays of linearly coupled waveguides”, J. Opt. Soc. Am. B 14,1807–1815 (1997). [CrossRef]

] and quadratic [21

21. Z. Xu, Ya.V. Kartashov, L.C. Crasovan, D. Mihalache, and L. Torner, “Spatiotemporal discrete multicolor solitons,” Phys. Rev. E 70,066618 (2004). [CrossRef]

, 22

22. N.C. Panoiu, R.M. Osgood Jr., and B.A. Malomed, “Semidiscrete composite solitons in arrays of quadratically nonlinear waveguides,” Opt. Lett. 31,1097–1099 (2006). [CrossRef] [PubMed]

] nonlinear optical media, and stable odd-symmetry spatiotemporal solitons have been shown to exist. In this work, we extend this analysis to the case of nonlinear surface waves, and consider a truncated array of weakly coupled optical waveguides taking into account the spatiotemporal evolution of light near the edge of the waveguide array. We combine the key features of both continuous and discrete nonlinear models and analyze, for the first time to our knowledge, the existence and properties of continuous-discrete soliton families describing spatiotemporal discrete surface solitons.

Fig. 1. Examples of stable spatiotemporal surface solitons localized at distances of (a) d=0, (b) d=1, and (c) d=2 from the edge of the waveguide array (at β=3.5), and unstable modes centered at distances of (d) d=0, (e) d=1, and (f) d=2 (at β= 2.5).

2. Model

We consider an array of weakly coupled nonlinear optical waveguides described, in the tight-binding approximation, by the effective discrete nonlinear equations [23

23. Yu. S. Kivshar and G. P. Agrawal, “Optical Solitons: From Fibers to Photonic Crystals” (Academic Press, San Diego, 2003).

].We take into account the spatiotemporal evolution of light, similar to the earlier studies [17

17. A.B. Aceves, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19,329–331 (1994). [CrossRef] [PubMed]

, 18

18. E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, “Stability of discrete solitons and quasicollapse to intrinsically localized modes,”Phys. Rev. Lett. 73,1055–1058 (1994). [CrossRef] [PubMed]

, 19

19. A.B. Aceves, G.G. Luther, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Energy localization in nonlinear fiber arrays: Collapse-effect compresor,” Phys. Rev. Lett. 75,73–76 (1995). [CrossRef] [PubMed]

, 20

20. A.B. Aceves, M. Santagiustina, and C. De Angelis, “Analytical study of nonlinear-optical pulse dynamics in arrays of linearly coupled waveguides”, J. Opt. Soc. Am. B 14,1807–1815 (1997). [CrossRef]

], but also assume that our waveguide array is truncated so that the light localization occurs near the edge of the waveguide array. The corresponding nonlinear model can be written in the form,

iE1zγ2E1t2+E2+σE12E1=0,
idEndzγ2Ent2+(En+1+En1)+σEn2En=0,n2,
(1)

where n=1 designates the edge of the waveguide array. In this semi-infinite continuous-discrete model (1) the propagation coordinate z and the dispersion coefficient γ are normalized to the intersite coupling V. In deriving Eqs. (1) the actual electric field in the nth guide E n has been decomposed into the product of the vectorial guided mode profile of the isolated channel waveguide e(x,y) and the respective mode amplitude ℰn, which can be finally normalized to give En=χeff/Vn, where the effective nonlinear coefficient is χeff=ωcn2Aeffn2 being the nonlinear refractive index of the material and A eff the effective mode area. σ=±1 defines focusing or defocusing nonlinearity of the waveguide material, respectively.

3. Spatiotemporal surface waves

First, we are looking for spatiotemporal soliton solutions of this nonlinear model in the form En(t; z)=exp(iβz)En(t), where β is the nonlinearity-induced shift of the waveguide propagation constant, serving likewise as a family parameter, and the envelope En(t) describes the temporal evolution of the soliton-like pulse in the n–th waveguide. Although in a discrete model various combinations of the signs of dispersion and nonlinearity as well as the spatial topology (unstagged solutions - in phase solitons, staggered solutions - π- out of phase solutions) may potentially lead to spatio-temporal localized solution we restrict ourselves here for the sake of clarity to the case of anomalous dispersion (γ<0), focusing nonlinearity (σ=+1) and inphase solitons. If we scale out the dispersion parameter by the transformation tτγ we obtain

Fig. 2. Families of the spatiotemporal surface solitons. (a) Normalized power vs. propagation constant β for the surface solitons located at the distances d=0, d=1, and d=2 from the edge of the array. (b) Hamiltonian vs. power for the localized surface modes. Stable branches are plotted by black lines whereas unstable branches- by red lines; the blue lines show the corresponding dependencies for the case of odd spatiotemporal solitons in the infinite waveguide array.
d2E1dτ2βE1+E2+E12E1=0,
d2Endτ2βEn+(En+1+En1)+En2En=0,n2.
(2)

We find numerically localized solutions En(t) of the coupled equations (2) assuming that the amplitude of the pulses in each waveguide, max|En|, decays rapidly far from the edge of the waveguide array, so that the corresponding solution describes a mode localized near the surface. We find the localized surface solitons by solving (2) using a standard band-matrix algorithm [24

24. G. Dahlquist and Å. Björk, “Numerical Methods,” (Prentice Hall, Englewood Cliffs, 1974).

] to deal with the corresponding two-point boundary-value problem.

Figures 1(a-f) show several examples of the nonlinear spatiotemporal continuous-discrete localized states (‘discrete surface light bullets’) located at different distances d from the surface for the case of the focusing nonlinearity, similar to the case of multiple surface plane waves analyzed earlier [25

25. M.I. Molina, R.A. Vicencio, and Yu.S. Kivshar, “Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays,” Opt. Lett. 31,1693–1695 (2006). [CrossRef] [PubMed]

]. The nonlinear modes can be characterized by the total mode power

P(β)=j=1+Ej(β)2,
(3)

which is a conserved quantity. The localized solution centered at the edge waveguide (n=1) describes the light bullet with the maximum localized at the surface, this solution is a spatiotemporal generalization of the discrete surface solitons predicted earlier byMakris et al. [10

10. K.G. Makris, S. Suntsov, D.N. Christodoulides, G.I. stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30,2466–2668 (2005). [CrossRef] [PubMed]

]. However, there exist multiple localized states near the surface, and their stability is an important characteristic of an interplay between nonlinearity, dispersion and discrete diffraction in the array, on one hand, and the surface created by the lattice truncation, on the other. Therefore, we find other spatiotemporal states including both odd and even modes [23

23. Yu. S. Kivshar and G. P. Agrawal, “Optical Solitons: From Fibers to Photonic Crystals” (Academic Press, San Diego, 2003).

] located at the finite distances d=1,2, … from the edge of the waveguide array. Several such modes are shown in Figs. 1(b-f), with the corresponding power dependencies constructed in Fig. 2(a); they describe a crossover regime between the continuous-discrete surface light bullet of Fig. 1(a), with the maximum amplitude located at the surface, and their counterpart predicted to exist inside of the waveguide arrays [17

17. A.B. Aceves, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19,329–331 (1994). [CrossRef] [PubMed]

, 18

18. E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, “Stability of discrete solitons and quasicollapse to intrinsically localized modes,”Phys. Rev. Lett. 73,1055–1058 (1994). [CrossRef] [PubMed]

, 19

19. A.B. Aceves, G.G. Luther, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Energy localization in nonlinear fiber arrays: Collapse-effect compresor,” Phys. Rev. Lett. 75,73–76 (1995). [CrossRef] [PubMed]

] when the surface effects vanish.

Fig. 3. Instability-driven evolution of unstable solitons corresponding to the upper branches in Fig. 2 for β=3. (a,b) Reshaping of the unstable d=0 soliton after the propagation for z=1200 into a stable d=0 soliton. (c,d) Hopping of the unstable d=1 soliton (z=0) into the neighboring site and the generation of a stable d=2 soliton at z=1200.

If we compare the corresponding power curves of different surface modes including the case of a spatiotemporal soliton deep inside the array [blue curve in Fig. 2(a)], we notice that the threshold power of surface localized modes is lower than that of the bulk mode. Therefore, in sharp contrast with one-dimensional surface solitons [10

10. K.G. Makris, S. Suntsov, D.N. Christodoulides, G.I. stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30,2466–2668 (2005). [CrossRef] [PubMed]

, 25

25. M.I. Molina, R.A. Vicencio, and Yu.S. Kivshar, “Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays,” Opt. Lett. 31,1693–1695 (2006). [CrossRef] [PubMed]

], the surface of a waveguide array creates an effectively attractive potential for the spatiotemporal localized modes that reduces the threshold power for the mode localization.

To analyze linear stability of the nonlinear states found numerically, we calculate not only the mode power (2) but also the second conserved quantity of the dynamical system (2), the system’s Hamiltonian H

H=j=1+(EjEj122Ej2+Ejτ212Ej4).
(4)

Stable spatiotemporal solitons should correspond to the lower branch of the dependence H=H(P). The typical single cusp-behaviour of the dependence H=H(P) is shown in Fig. 2(b) where the lower branches correspond to the stable surface modes. This observation is confirmed by direct simulations of the propagation of the stationary solitons perturbed by a white noise.

The stability results follow from the dependence H=H(P) of Fig. 2(b), and they have been checked in direct simulations of the dynamical equations (1) carried out by means of the Crank-Nicholson scheme with transparent boundary conditions to account for an escape of radiation from the computation window. The system of nonlinear finite-difference equations was solved first by means of the Picard iteration method [26

26. J. M. Ortega and W. C. Rheinboldt, “Iterative Solution of Nonlinear Equations in Several Variables,” (Academic Press, New York, 1970), p. 182.

], and the resulting linear system was treated using the Gauss-Seidel iterative scheme. For a good convergence, five Picard iterations and six Gauss-Seidel iterations were required.We have employed a transverse grid with the step-length Δτ=0.02, and used a typical longitudinal step-size of Δz=2×10-4.

Fig. 4. Evolution of the soliton amplitude (a) and Hamiltonian (b) versus propagation distance for the tho instability scenarios shown in Fig. 3. Red lines: the reshaping of the unstable d=0 solitons into the stable d=0 soliton; blue lines: the flipping of the unstable d=1 soliton into a stable d=2 one.

Figures 3(a-d) demonstrate two different scenarios of the evolution of unstable high-power spatiotemporal solitons located at the distances d=0 and d=1 from the surface and corresponding to the upper unstable branches in Fig. 2(b). Typically, we observe either reshaping of an unstable soliton after its propagation into a stable soliton of the same family [see Fig. 3(a,b)] or hopping of the surface mode into the neighboring site and the the formation of a stable soliton of another family with the center position shifted away from the surface [see Figs. 3(c,d)]. These instability-driven scenarios are confirmed by a direct study of the evolution of the soliton amplitude and the corresponding Hamiltonian, as shown in Figs. 4(a,b), that indicate clearly both switching and hopping mechanisms of the mode instability.

4. Conclusions

We have analyzed the spatiotemporal light localization near the edge of a semi-infinite one-dimensional array of weakly coupled nonlinear waveguides. We have revealed the existence of a novel class of continuous-discrete spatiotemporal surface solitons (discrete surface light bullets) and described their unique properties. Our results can be easily extended for describing spatiotemporal localization effects for staggered solitons such as surface gap solitons [12

12. Ya.V. Kartashov, V.V. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96,073901 (2006). [CrossRef] [PubMed]

, 13

13. C.R. Rosberg, D.N. Neshev, W. Krolikowski, A. Mitchell, R.A. Vicencio, M.I. Molina, and Yu.S. Kivshar, “Observation of surface gap solitons,” Phys. Rev. Lett. 97,083901 (2006). [CrossRef] [PubMed]

] in defocusing nonlinear media with normal dispersion.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (FKZ 13N8340/1), the Deutsche Forschungsgemeinschaft (Priority Program SPP1113, FOR557 and Research Unit 532), and the Australian Research Council. Dumitru Mihalache, Dumitru Mazilu, and Yuri Kivshar thank the Institute of Solid State Theory and Theoretical Optics for a warm hospitality during their stay in Jena.

References and links

1.

G. Borstel and H. J. Falge, in: Electromagnetic SurfaceModes (ed. A. D. Boardman)219–248 (Wiley, Chichester, 1982).

2.

P. Yeh, A. Yariv, and A.Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32,104–105 (1978).(1978). [CrossRef]

3.

D. Mihalache, M. Bertolotti, and C. Sibilia, “Nonlinear wave propagation in planar structures,” Prog. Opt. 27,229–313 (1989).

4.

A.D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, “Third-order nonlinear electromagnetic TE and TM guided waves,” in: Nonlinear Surface Electromagnetic Phenomena,V.M. Agranovich, A.A. Maradudin, H.-E. Ponath, and G.I. Stegeman, eds. (Elsevier Science Publishers B.V., New York, 1991), pp.73–287.

5.

W.J. Tomlinson, “Surface wave at a nonlinear interface,” Opt. Lett. 5,323–325 (1980) [CrossRef] [PubMed]

6.

V.K. Fedyanin and D. Mihalache, “P-polarized nonlinear surface polaritons in layered structures,” Z. Phys. B 47,167 (1982). [CrossRef]

7.

G.I. Stegeman, C.T. Seaton, J. Chilwell, and S.D. Smith, “Nonlinear waves guided by thin films,” Appl. Phys. Lett. 44,830–832 (1984). [CrossRef]

8.

N.N. Akhmediev, V.I. Korneyev, and Y.V. Kuzmenko, “Excitation of nonlinear surface-waves by Gaussian light beams,” Zh. Eksp. Teor. Fiz. 88,107 (1985).

9.

F. Lederer and D. Mihalache, “An additional kind of nonlinear s-polarized surface plasmon-polaritons,” Solid State Commun. 59,151 (1986). [CrossRef]

10.

K.G. Makris, S. Suntsov, D.N. Christodoulides, G.I. stegeman, and A. Hache, “Discrete surface solitons,” Opt. Lett. 30,2466–2668 (2005). [CrossRef] [PubMed]

11.

S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, A. Naché, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, “Observation of discrete surface solitons,” Phys. Rev. Lett. 96,063901 (2006). [CrossRef] [PubMed]

12.

Ya.V. Kartashov, V.V. Vysloukh, and L. Torner, “Surface gap solitons,” Phys. Rev. Lett. 96,073901 (2006). [CrossRef] [PubMed]

13.

C.R. Rosberg, D.N. Neshev, W. Krolikowski, A. Mitchell, R.A. Vicencio, M.I. Molina, and Yu.S. Kivshar, “Observation of surface gap solitons,” Phys. Rev. Lett. 97,083901 (2006). [CrossRef] [PubMed]

14.

I.E. Tamm, “A possible kind of electron binding on crystal surfaces,” Z. Phys. 76,849–850 (1932). [CrossRef]

15.

Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15,1282–1284 (1990). [CrossRef] [PubMed]

16.

B.A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons”, J. Opt. B: Quantum Semiclass. Opt. 7, R53-R72 (2005). [CrossRef]

17.

A.B. Aceves, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19,329–331 (1994). [CrossRef] [PubMed]

18.

E.W. Laedke, K.H. Spatschek, and S.K. Turitsyn, “Stability of discrete solitons and quasicollapse to intrinsically localized modes,”Phys. Rev. Lett. 73,1055–1058 (1994). [CrossRef] [PubMed]

19.

A.B. Aceves, G.G. Luther, C. De Angelis, A.M. Rubenchik, and S.K. Turitsyn, “Energy localization in nonlinear fiber arrays: Collapse-effect compresor,” Phys. Rev. Lett. 75,73–76 (1995). [CrossRef] [PubMed]

20.

A.B. Aceves, M. Santagiustina, and C. De Angelis, “Analytical study of nonlinear-optical pulse dynamics in arrays of linearly coupled waveguides”, J. Opt. Soc. Am. B 14,1807–1815 (1997). [CrossRef]

21.

Z. Xu, Ya.V. Kartashov, L.C. Crasovan, D. Mihalache, and L. Torner, “Spatiotemporal discrete multicolor solitons,” Phys. Rev. E 70,066618 (2004). [CrossRef]

22.

N.C. Panoiu, R.M. Osgood Jr., and B.A. Malomed, “Semidiscrete composite solitons in arrays of quadratically nonlinear waveguides,” Opt. Lett. 31,1097–1099 (2006). [CrossRef] [PubMed]

23.

Yu. S. Kivshar and G. P. Agrawal, “Optical Solitons: From Fibers to Photonic Crystals” (Academic Press, San Diego, 2003).

24.

G. Dahlquist and Å. Björk, “Numerical Methods,” (Prentice Hall, Englewood Cliffs, 1974).

25.

M.I. Molina, R.A. Vicencio, and Yu.S. Kivshar, “Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays,” Opt. Lett. 31,1693–1695 (2006). [CrossRef] [PubMed]

26.

J. M. Ortega and W. C. Rheinboldt, “Iterative Solution of Nonlinear Equations in Several Variables,” (Academic Press, New York, 1970), p. 182.

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 14, 2006
Revised Manuscript: December 28, 2006
Manuscript Accepted: December 29, 2006
Published: January 22, 2007

Citation
Dumitru Mihalache, Dumitru Mazilu, Falk Lederer, and Yuri S. Kivshar, "Stable discrete surface light bullets," Opt. Express 15, 589-595 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Borstel and H. J. Falge, in Electromagnetic Surface Modes, A. D. Boardman, ed., (Wiley, Chichester, 1982) pp. 219-248.
  2. P. Yeh, A. Yariv, and A. Y. Cho, "Optical surface waves in periodic layered media," Appl. Phys. Lett. 32, 104 - 105 (1978). [CrossRef]
  3. D. Mihalache, M. Bertolotti, and C. Sibilia, "Nonlinear wave propagation in planar structures," Prog. Opt. 27,229 - 313 (1989).
  4. A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, "Third-order nonlinear electromagnetic TE and TM guided waves," in: Nonlinear Surface Electromagnetic Phenomena, V. M. Agranovich, A. A. Maradudin, H.-E. Ponath, and G. I. Stegeman, eds., (Elsevier Science Publishers B.V., New York, 1991), pp. 73-287.
  5. W. J. Tomlinson, "Surface wave at a nonlinear interface," Opt. Lett. 5,323-325 (1980). [CrossRef] [PubMed]
  6. V. K. Fedyanin and D. Mihalache, "P-polarized nonlinear surface polaritons in layered structures," Z. Phys. B 47,167 (1982). [CrossRef]
  7. G. I. Stegeman, C. T. Seaton, J. Chilwell, and S. D. Smith, "Nonlinear waves guided by thin films," Appl. Phys. Lett. 44,830-832 (1984). [CrossRef]
  8. N. N. Akhmediev, V. I. Korneyev, and Y. V. Kuzmenko, "Excitation of nonlinear surface-waves by Gaussian light beams," Zh. Eksp. Teor. Fiz. 88,107 (1985).
  9. F. Lederer and D. Mihalache, "An additional kind of nonlinear s-polarized surface plasmon-polaritons," Solid State Commun. 59,151 (1986). [CrossRef]
  10. K. G. Makris, S. Suntsov, D. N. Christodoulides, G. I. Stegeman, and A. Hache, "Discrete surface solitons," Opt. Lett. 30,2466 - 2668 (2005). [CrossRef] [PubMed]
  11. S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman, A. Naché, R. Morandotti, H. Yang, G. Salamo, and M. Sorel, "Observation of discrete surface solitons," Phys. Rev. Lett. 96,063901 (2006). [CrossRef] [PubMed]
  12. Ya. V. Kartashov, V. V. Vysloukh, and L. Torner, "Surface gap solitons," Phys. Rev. Lett. 96,073901 (2006). [CrossRef] [PubMed]
  13. C. R. Rosberg, D. N. Neshev, W. Krolikowski, A. Mitchell, R. A. Vicencio, M. I. Molina, and Yu. S. Kivshar, "Observation of surface gap solitons," Phys. Rev. Lett. 97, 083901 (2006). [CrossRef] [PubMed]
  14. I. E. Tamm, "A possible kind of electron binding on crystal surfaces," Z. Phys. 76,849-850 (1932). [CrossRef]
  15. Y. Silberberg, "Collapse of optical pulses," Opt. Lett. 15, 1282-1284 (1990). [CrossRef] [PubMed]
  16. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, "Spatiotemporal optical solitons," J. Opt. B: Quantum Semiclassical. Opt. 7,R53 - R72 (2005). [CrossRef]
  17. A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, "Multidimensional solitons in fiber arrays," Opt. Lett. 19, 329 - 331 (1994). [CrossRef] [PubMed]
  18. E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, "Stability of discrete solitons and quasicollapse to intrinsically localized modes," Phys. Rev. Lett. 73,1055 - 1058 (1994). [CrossRef] [PubMed]
  19. A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, "Energy localization in nonlinear fiber arrays: Collapse-effect compresor," Phys. Rev. Lett. 75,73-76 (1995). [CrossRef] [PubMed]
  20. A. B. Aceves, M. Santagiustina, and C. De Angelis, "Analytical study of nonlinear-optical pulse dynamics in arrays of linearly coupled waveguides," J. Opt. Soc. Am. B 14,1807-1815 (1997). [CrossRef]
  21. Z. Xu, Ya. V. Kartashov, L. C. Crasovan, D. Mihalache, and L. Torner, "Spatiotemporal discrete multicolor solitons," Phys. Rev. E 70,066618 (2004). [CrossRef]
  22. N. C. Panoiu, R. M. Osgood, Jr., and B. A. Malomed, "Semidiscrete composite solitons in arrays of quadratically nonlinear waveguides," Opt. Lett. 31,1097-1099 (2006). [CrossRef] [PubMed]
  23. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, (Academic Press, San Diego, 2003).
  24. G. Dahlquist and °A. Björk, Numerical Methods, (Prentice Hall, Englewood Cliffs, 1974).
  25. M. I. Molina, R. A. Vicencio, and Yu. S. Kivshar, "Discrete solitons and nonlinear surface modes in semi-infinite waveguide arrays," Opt. Lett. 31,1693-1695 (2006). [CrossRef] [PubMed]
  26. J. M. Ortega, and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, (Academic Press, New York, 1970), pp. 182.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited