OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14155–14162
« Show journal navigation

Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 μm

S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, O. Le Gouezigou, K. Merghem, A. Martinez, Q. Zou, and A. Ramdane  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14155-14162 (2007)
http://dx.doi.org/10.1364/OE.15.014155


View Full Text Article

Acrobat PDF (258 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical feedback tolerance is experimentally investigated on a 600-μm-long quantum-dash based Fabry-Pérot laser emitting at 1.57μm. While quantum-dashes are structurally intermediate to quantum-wells and quantum-dots, the observed behaviour is distinctly like that of a quantum-well based laser but with greater stability. Coherence collapse and low-frequency fluctuation regimes are observed and are reported here. The onset of the coherence collapse regime is experimentally determined and is found to vary from -29 dB to -21 dB external feedback level when increasing the current from twice to nine times the threshold current.

© 2007 Optical Society of America

1. Introduction

The technological remedy for this susceptibility to external reflections has been to incorporate an optical isolator into transmitter laser packages. For cost sensitive metropolitan and local area networks this is a major drawback, and efforts have been made to develop lasers highly tolerant to optical feedback. Quantum-dot (QD) based semiconductor lasers offer such a possibility. Early, simple models of QD lasers predicted narrow, symmetric gain spectra [4

4. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997). [CrossRef]

] due to the discrete density of states. As a result, near-zero linewidth enhancement factors (LEF) were expected. They were also expected to display enhanced performance under feedback conditions compared to quantum-well based devices as a result of their comparatively low LEFs. In particular, they were expected to have a high CC threshold. In the InAs/GaAs QD system near the 1.3 μm communications band, several experimental works have fulfilled the predictions of these early models; near-zero LEF has been reported [5

5. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. 11, 1527–1529 (1999). [CrossRef]

] and QD devices do indeed show high resistance to feedback instabilities [6–8

6. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003). [CrossRef]

]. However, the LEF does not turn to be the most important factor for the enhanced resistance; instead it is found that increased relaxation oscillation damping arising from gain saturation is the feature most responsible for the extra stability [7

7. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]

]. In the InAs/GaAs QD system, this saturation arises from the quantized energy states of the dots and the currently achievable areal densities of QDs, on the order of 3×1010 cm-2 per layer [4

4. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997). [CrossRef]

].

Despite the excellent performance of InAs/GaAs QD lasers near the silica fibre dispersion minimum, currently the material system cannot provide gain in the vital loss minimum band near 1.55 μm. To address this need, InAs/InP (100) nanostructured materials have been investigated. In comparison with InAs/GaAs QD materials, it is much more difficult to grow isotropic dots in this system; rather quantum-dashes are typically obtained. These dashes nonetheless provide high gain and low losses [9–12

9. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. 13, 767–769 (2001). [CrossRef]

]. Indeed, continuous-wave (CW) room-temperature lasing operation has been demonstrated on the ground state for a cavity length as short as 200 μm. The high gain results from the reduced quantization of the density of states in one direction, giving a structure intermediate between quantum wells and quantum dots. Broadly speaking, the quantum-dash structures reported in the literature can be classified either as dashes-in-a-barrier or dashes-in-a-well. We have previously reported on direct modulation at 10 Gbps of a dashes-in-a-well based laser emitting at 1.51 μm up to the coherence collapse at -24-dB feedback from the system, which is nearly compliant with the 10 Gbps Ethernet standard [13

13. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, and A. Ramdane, “Tolerance to optical feedback of 10 Gbps quantum-dash based lasers emitting at 1.51 μm,” IEEE Photon. Technol. 19, 1181–1183 (2007). [CrossRef]

].

In this work, we investigate the tolerance to optical feedback of quantum-dash based lasers realised from a dashes-in-a-barrier structure. Using two distinct experimental arrangements, we observe and investigate coherence collapse and low-frequency fluctuation regimes over a wide range of external reflector distances. The feedback level for the onset of coherence collapse, γcrit, is experimentally determined in CW operation using both the microwave and optical spectra. The performance under optical feedback is found to be superior with respect to quantum-well devices, though the dash structure is less resistant than QD devices at 1.3 μm. It is found that these devices are compliant with the 10 Gbps Ethernet standard for isolator-free operation.

2. Device

The dashes-in-a-barrier structure was grown by gas source molecular beam epitaxy on a (100) InP substrate. It consists of InAs quantum dashes enclosed within 40-nm-thick barriers and two 80-nm-thick separate confinement heterostructure (SCH) layers. Both the barriers and the SCH layers are undoped and lattice-matched quaternary Ga0.2In0.8As0.4P0.6 layers (λg = 1.17 μm) [11

11. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007). [CrossRef]

]. From this structure, a 600-μm-long Fabry-Pérot laser was fabricated with ridge width of 1.5 μm and cleaved facets. The device was mounted on a temperature stabilised holder. The threshold current was 13 mA at 25°C and the slope efficiency was 0.18 W/A. The linewidth enhancement factor (LEF) estimated by the FM/AM method [14

14. C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]

], and damping factor (high-frequency modulation technique) values are reported in Fig. 1. For comparison, the typical values for the LEF and the damping factor for a 350-μm-long strained multiple quantum well based laser are ~3 and ~30.109 rad.s-1 at 10 mW respectively.

Fig. 1. Linewith enhancement factor (LEF) and damping factor versus current.

3. Experimental setups and feedback level determination

The behaviour of quantum-dashes under optical feedback was assessed using the same device on both a fibre-coupled and a free-space setup, respectively described in Fig. 2 and Fig. 3. The fibre-based experiment permitted long feedback lengths, much like those found in optical systems with splice or connector reflections. The free-space setup was restricted in its feasible feedback distance, but allowed far higher feedback levels. For bulk or quantum-well lasers, γcrit is independent of the external cavity length and so agreement between both setups would be expected (regime IV, Fig. 8 in Ref [1

1. R.W. Tkach and A. R. Chraplyvy, “Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers,” IEEE J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]

]). For quantum-dot lasers this is not the case [15

15. O. Carroll, S. P. Hegarty, G. Huyet, and B. Corbett, “Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers,” Electron. Lett. 41, 911–912 (2005). [CrossRef]

] and one would expect quite varied values of γcrit depending on the length. While quantum-dash lasers are expected to be intermediate devices to the two, we find that in this respect they behave distinctly like quantum-wells.

3.1 Setup 1

In setup 1 (Fig. 2), light from the device under test was coupled using a lensed fibre to branch 1 of a four port 90/10 fibre coupler. The optical feedback was created with a reflector in branch 2, 90% coupled to branch 1, and its level was controlled via a variable attenuator. A polarisation controller was used to match the feedback to the emitted TE polarised light. The effect of the optical feedback was analysed in branch 3 with a 10-pm resolution optical spectrum analyser (OSA). The external cavity length was 18 m.

Fig. 2. Experimental setup 1. The device under test was coupled using a lensed fibre to a 90/10 single-mode power splitter. The power meter was used to estimate the feedback level and the OSA was used to determine the onset of coherence collapse.

The feedback level γ is defined as the ratio of the power returned to the facet P1 to the emitted power P0,

γ=P1Po
(1)

and its value is determined by measuring the power in branch 4 and accounting for the coupler ratio and fibre coupling losses. A maximum feedback level of -17 dB can be achieved, depending on the coupling losses from the laser facet to the coupling fibre.

3.2 Setup 2

In setup 2 (Fig. 3), the device was mounted on a temperature-controlled stage that gave optical access to both facets, allowing significantly higher feedback levels than those in setup 1. The laser output from one facet was focused by a high numerical aperture (NA) aspheric lens onto a broadband mirror. The mirror angle and the beam focus were adjusted to maximise the coupling back into the laser, deduced by minimising the threshold current. The feedback level was then adjusted using a calibrated variable neutral density filter placed in the beam path. The output from the second facet was collimated through a free-space isolator and coupled to a single mode fibre isolator. The output from the fibre isolator was connected either to an OSA, an electrical spectrum analyser (ESA) or to a 6 GHz real-time oscilloscope. The OSA was used here as with setup 1, while the ESA made known the existence of external cavity modes and the oscilloscope gave details on the time series of the laser intensity.

Fig. 3. Experimental setup 2. The output from one facet of the device was focused by a high NA aspheric lens onto a broadband mirror. The output from the other facet was collimated through a free-space isolator and coupled to a single mode fibre isolator connected either to an OSA, an electrical spectrum analyser (ESA) or to a 6 GHz real-time oscilloscope. The OSA, ESA and oscilloscope were used to determine the onset of the CC and LFF regimes.

The laser facet and the external mirror formed a composite reflector with an effective field reflectance reff. We find an expression for reff by assuming we have coherent, steady-state operation in the extended cavity in a manner similar to [16

16. A. Olsson and C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. 17, 1320–1323 (1981). [CrossRef]

]. We then solve the boundary-value problem for the fields in the extended cavity to get

reff=r+(1r2)rextTξ1+rrextT
(2)

where r is the field reflectance of both laser facets, rext is the field reflectance of the external reflector, T is the power transmittance of the variable attenuator and ξ is a geometrical coupling constant resulting from the non-perfect coupling of the light back into the cavity due to effects such as beam astigmatism. Of course, this expression is not suitable for use in a dynamical regime like that of coherence collapse since the steady state assumption fails there, but it suffices to give a threshold for entry into such regimes and so is appropriate for this work. The feedback level in this setup is given by the square of the ratio of the backward going field component E1 to the forward going field component E0 at the facet all attenuated by ξ2. Thus the feedback strength with this setup is given by,

γ=rext2T2ξ2
(3)

A maximum feedback level of about -1.1 dB can be achieved.

The amplified spontaneous emission spectrum of the solitary laser was measured as a function of injection current and, using the Hakki-Paoli method [17

17. B. W. Hakki and T. L. Paoli, “CW degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44, 4113–4119 (1973). [CrossRef]

], the gain of the solitary laser versus current was deduced.

Fig. 4. (a). Light-current characteristics. (b) Net gain versus current.

On introduction of feedback the laser threshold is reduced [Fig. 4(a)]. The gain at reduced threshold can be read from Fig. 4(b) and the effective reflectance for this feedback level derived from the condition of unity round trip gain

reff=1regL
(4)

4. Coherence collapse

Coherence collapse was manifested by this device in several ways: a sudden broadening of the optical spectrum [Fig. 5(a)], enhancement of the RF noise and external cavity peaks in the RF spectrum [Fig. 5(b)] and power fluctuations in the time-series [Fig. 5(c)].

Fig. 5. (a). Optical spectrum with increasing feedback. (b) RF spectrum with increasing feedback at 30 mA. (c) Time series in the CC regime.

With both setups, γcrit, the value of the feedback strength at the onset of coherence collapse, was determined from the sudden broadening of the optical spectrum which occurs at this critical strength [Fig. 5(a)] as this method was both reproducible and precise. This broadening results from the undamping of the relaxation oscillations. Each mode in the optical spectrum has relaxation oscillation sidebands and when the oscillations become undamped the sidebands grow in strength causing the mode to apparently broaden dramatically. Figure 6 illustrates the onset of coherence collapse determined using this criterion with both setups as a function of the emitted power. The significantly different external cavity lengths do not affect the onset of CC. Thus, in this respect the device behaves more like a QW laser [1

1. R.W. Tkach and A. R. Chraplyvy, “Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers,” IEEE J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]

] than a QD laser [15

15. O. Carroll, S. P. Hegarty, G. Huyet, and B. Corbett, “Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers,” Electron. Lett. 41, 911–912 (2005). [CrossRef]

].

Fig. 6. Onset of coherence collapse (dB) versus emitted power determined at external cavity lengths of 0.3m, 0.9m, 1.5m (setup 2) and 18m (setup 1).

The onset of coherence collapse is found to increase with current from - 29 dB at 20 mA to -21 dB at 90 mA. This increase in feedback stability with current injection has also been previously reported for bulk lasers [1

1. R.W. Tkach and A. R. Chraplyvy, “Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers,” IEEE J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]

]. In setup 2, the microwave spectrum of the laser was simultaneously observed and the onset of coherence collapse was seen to be abrupt, without the cascade of oscillations seen for QD lasers [15

15. O. Carroll, S. P. Hegarty, G. Huyet, and B. Corbett, “Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers,” Electron. Lett. 41, 911–912 (2005). [CrossRef]

]. In [18

18. J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47, 2249–2252 (1993). [CrossRef] [PubMed]

] a period doubling route to chaos was observed when the ratio of the relaxation oscillation frequency and the external cavity frequency was an integer. We did not observe any such route to chaos but we did not investigate such finely tuned setups, instead focusing on generic cases.

The maximum return loss tolerance Γcrit from the system as defined in the 10 Gbps Ethernet standard, can be deduced by using:

Γcrit=γcrit(2C)
(5)

where C is the coupling loss from the laser to the fibre estimated at ~ -5 dB for this device. By using Eq. (5) and Fig. 6, a -19 dB ≤ Γcrit ≤ -11 dB maximum return loss tolerance is obtained.

5. Low-frequency fluctuations

Fig. 7. Time-series in the LFF regime at -1.2 dB feedback at 19 mA. The trace shown was obtained for an external cavity length of 0.5m.

The LFF can also be observed in the RF spectrum, appearing as a broad peak at low frequencies (Fig. 8). The frequency increase of dropouts with injection current is reflected in the RF spectra.

Fig. 8. RF spectrum in the LFF regime (at -1.2 dB feedback).

This is the first report to our knowledge of LFF in quantum-dash lasers and the phenomenon manifests itself essentially as with quantum-well lasers, forming another distinction from the behaviour of quantum-dot lasers.

6. Conclusion

In this work, quantum-dash based lasers emitting at 1.57 μm were assessed under optical feedback and their behaviour was found to have significantly more in common with conventional bulk or quantum-well lasers than QD lasers at 1.3 μm. Several well-known features of quantum-well feedback behaviour were observed, such as the onset of coherence collapse being independent of external reflector distance, increased stability with increased injection current and the presence of a low-frequency-fluctuation regime close to threshold, all in contrast with reported QD experiments. Just as striking, the oscillation cascade reported as a route to coherence collapse for QD lasers was completely absent. Coherence collapse was observed at higher feedback levels than for quantum-well based lasers (~ -23 dB compared to ~ -37 dB at 5 mW). We demonstrated an onset of coherence collapse varying from -29 dB to -21 dB (depending on the injection current), corresponding to a maximum return loss tolerance of -19 dB / -11 dB from the system as defined in the 802.3ae 10 Gbps Ethernet standard. Thus, these devices comply with the requirement for isolator-free operation since their maximum return loss tolerance is greater than -21 dB.

Acknowledgments

This work has been supported by the EU IST/NMP Integrated Project ZODIAC, the SANDiE Network of Excellence and the Science Foundation Ireland under Contract No. sfi/01/fi/co.

References and links

1.

R.W. Tkach and A. R. Chraplyvy, “Regimes of Feedback Effects in 1.5-μm Distributed Feedback Lasers,” IEEE J. Lightwave Technol. 4, 1655–1661 (1986). [CrossRef]

2.

D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence Collapse in Single-Mode Semiconductor Lasers Due to Optical Feedback,” IEEE J. Quantum Electron. 21, 674–679 (1985). [CrossRef]

3.

J. Mork, B. Tromborg, and P. L. Christiansen, “Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis,” IEEE J. Quantum Electron. 24, 123–133 (1988). [CrossRef]

4.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 196–205 (1997). [CrossRef]

5.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. 11, 1527–1529 (1999). [CrossRef]

6.

H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. Malloy, and L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photon. Technol. Lett. 15, 1504–1506 (2003). [CrossRef]

7.

D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, “Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003). [CrossRef]

8.

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1072–1074 (2004). [CrossRef] [PubMed]

9.

R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. 13, 767–769 (2001). [CrossRef]

10.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. 14, 735–737 (2002). [CrossRef]

11.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G-H. Duan, “Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13, 111–124 (2007). [CrossRef]

12.

G. Moreau, S. Azouigui, D.-Y. Cong, K. Merghem, A. Martinez, G. Patriarche, A. Ramdane, F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, A. Accard, and F. Pommereau, “Effect of layer stacking and p-type doping on the performance of InAs/InP quantum-dash-in-a-well lasers emitting at 1.55 μ m,” Appl. Phys. Lett. 89, 241123 (2006). [CrossRef]

13.

S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, and A. Ramdane, “Tolerance to optical feedback of 10 Gbps quantum-dash based lasers emitting at 1.51 μm,” IEEE Photon. Technol. 19, 1181–1183 (2007). [CrossRef]

14.

C. Harder, K. Vahala, and A. Yariv, “Measurement of the linewidth enhancement factor of semiconductor lasers,” Appl. Phys. Lett. 42, 328–330 (1983). [CrossRef]

15.

O. Carroll, S. P. Hegarty, G. Huyet, and B. Corbett, “Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers,” Electron. Lett. 41, 911–912 (2005). [CrossRef]

16.

A. Olsson and C. L. Tang, “Coherent optical interference effects in external cavity semiconductor lasers,” IEEE J. Quantum Electron. 17, 1320–1323 (1981). [CrossRef]

17.

B. W. Hakki and T. L. Paoli, “CW degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44, 4113–4119 (1973). [CrossRef]

18.

J. Ye, H. Li, and J. G. McInerney, “Period-doubling route to chaos in a semiconductor laser with weak optical feedback,” Phys. Rev. A 47, 2249–2252 (1993). [CrossRef] [PubMed]

19.

G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, “Statistical Properties of the Dynamics of Semiconductor Lasers with Optical Feedback,” Europhys. Lett. 40, 619–624 (1997). [CrossRef]

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 13, 2007
Revised Manuscript: September 11, 2007
Manuscript Accepted: September 13, 2007
Published: October 12, 2007

Citation
S. Azouigui, B. Kelleher, S. P. Hegarty, G. Huyet, B. Dagens, F. Lelarge, A. Accard, D. Make, O. Le Gouezigou, K. Merghem, A. Martinez, Q. Zou, and A. Ramdane, "Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 μm," Opt. Express 15, 14155-14162 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Tkach and A. R. Chraplyvy, "Regimes of Feedback Effects in 1.5-µm Distributed Feedback Lasers," IEEE J. Lightwave Technol. 4, 1655-1661 (1986).Q1 [CrossRef]
  2. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, "Coherence Collapse in Single-Mode Semiconductor Lasers Due to Optical Feedback," IEEE J. Quantum Electron. 21, 674-679 (1985). [CrossRef]
  3. J. Mork, B. Tromborg, and P. L. Christiansen, "Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis," IEEE J. Quantum Electron. 24, 123-133 (1988). [CrossRef]
  4. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, V. M. Ustinov, "InGaAs-GaAs quantum-dot lasers," IEEE J. Sel. Top. Quantum Electron. 3, 196-205 (1997). [CrossRef]
  5. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Gain and linewidth enhancement factor in InAs quantum-dot laser diodes," IEEE Photon. Technol. 11, 1527-1529 (1999). [CrossRef]
  6. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. Malloy, and L. F. Lester, "High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers," IEEE Photon. Technol. Lett. 15, 1504-1506 (2003). [CrossRef]
  7. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, and A. R. Kovsh, "Feedback sensitivity of 1.3 µm InAs/GaAs quantum dot lasers," Electron. Lett. 39, 1819-1820 (2003). [CrossRef]
  8. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, "Sensitivity of quantum-dot semiconductor lasers to optical feedback," Opt. Lett. 29, 1072-1074 (2004). [CrossRef] [PubMed]
  9. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, "Room-temperature operation of InAs quantum-dash lasers on InP (001)," IEEE Photon. Technol. 13, 767-769 (2001). [CrossRef]
  10. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "Long-wavelength InP-based quantum-dash lasers," IEEE Photon. Technol. 14, 735-737 (2002). [CrossRef]
  11. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, G-H. Duan, "Recent advances on InAs/InP quantum dash based, semiconductor lasers and optical amplifiers operating at 1.55 ?m," IEEE J. Sel. Top. Quantum Electron. 13, 111-124 (2007). [CrossRef]
  12. G. Moreau, S. Azouigui, D.-Y. Cong, K. Merghem, A. Martinez, G. Patriarche, A. Ramdane, F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, A. Accard, and F. Pommereau, "Effect of layer stacking and p-type doping on the performance of InAs/InP quantum-dash-in-a-well lasers emitting at 1.55 µm," Appl. Phys. Lett. 89, 241123 (2006). [CrossRef]
  13. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, A. Accard, F. Grillot, A. Martinez, Q. Zou, and A. Ramdane, "Tolerance to optical feedback of 10 Gbps quantum-dash based lasers emitting at 1.51 µm," IEEE Photon. Technol. 19, 1181-1183 (2007). [CrossRef]
  14. C. Harder, K. Vahala, and A. Yariv, "Measurement of the linewidth enhancement factor of semiconductor lasers," Appl. Phys. Lett. 42, 328-330 (1983). [CrossRef]
  15. O. Carroll, S. P. Hegarty, G. Huyet, and B. Corbett, "Length dependence of feedback sensitivity of InAs/GaAs quantum dot lasers," Electron. Lett. 41, 911-912 (2005). [CrossRef]
  16. A. Olsson and C. L. Tang, "Coherent optical interference effects in external cavity semiconductor lasers, " IEEE J. Quantum Electron. 17, 1320-1323 (1981). [CrossRef]
  17. B. W. Hakki and T. L. Paoli, "CW degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973). [CrossRef]
  18. J. Ye, H. Li, and J. G. McInerney, "Period-doubling route to chaos in a semiconductor laser with weak optical feedback," Phys. Rev. A 47, 2249-2252 (1993). [CrossRef] [PubMed]
  19. G. Huyet, S. P. Hegarty, M. Giudici, B. de Bruyn, and J. G. McInerney, "Statistical Properties of the Dynamics of Semiconductor Lasers with Optical Feedback," Europhys. Lett. 40, 619-624 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited