OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16540–16545
« Show journal navigation

Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16540-16545 (2007)
http://dx.doi.org/10.1364/OE.15.016540


View Full Text Article

Acrobat PDF (189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An ultrashort-pulse Cr2+:ZnSe laser is a novel broadband source for sensitive high resolution molecular spectroscopy. A 130-fs pulse allows covering of up to 380 cm-1 spectral domain around 2.4 µm which is analyzed simultaneously with a 0.12 cm-1 (3.6 GHz) resolution by a Fourier-transform spectrometer. Recorded in 13 s, from 70-cm length absorption around 4150 cm-1, acetylene and ammonia spectra exhibit a 3800 signal-to-noise ratio and a 2.4·10-7 cm-1·Hz-1/2 noise equivalent absorption coefficient at one second averaging per spectral element, suggesting a 0.2 ppbv detection level for HF molecule. With the widely practiced classical tungsten lamp source instead of the laser, identical spectra would have taken more than one hour.

© 2007 Optical Society of America

1. Introduction

Mode-locked lasers and femtosecond frequency combs actively enter [1

1. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, “Femtosecond laser Fourier transform absorption spectroscopy,” Opt. Lett. 32, 1677–1679 (2007). [CrossRef] [PubMed]

6

6. J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called “Doppler-limited multiplex frequency comb spectrometry.”

] the field of broadband spectrometry. In particular, their high brightness allows improving the signal to noise ratio (SNR) of the traditional absorption spectroscopy [1

1. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, “Femtosecond laser Fourier transform absorption spectroscopy,” Opt. Lett. 32, 1677–1679 (2007). [CrossRef] [PubMed]

]. For spectroscopic applications, the mid-infrared spectral region is of special interest, as most of molecules have intense vibration-rotation transitions lying in this domain. Developing sensitive techniques in this region results therefore in improved detection levels. High resolution is also advantageous because the Doppler profiles of the infrared lines are narrow and their resolved observation increases the sensitivity. The accuracy of the absolute frequency reading is required for unambiguous identification of the lines and species. Additionally, the broadband simultaneous detection is often necessary, for instance, for multi-species trace gas sensing or for accurate renewed molecular theoretical approaches. Most of the traditional spectrometric approaches encounter severe limitations if these four features are to be met simultaneously. For example, the multichannel grating spectrometers have poor efficiency both from the point of view of spectral resolution and broadband coverage; and wavelength agile laser techniques [7

7. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007). [CrossRef] [PubMed]

] have limited accuracy. In addition, the mid-infrared region has been suffering from a lack of convenient broadband laser sources, while the spectral radiance of incoherent sources is insufficient for sensitive measurements. A broadband mid-infrared approach to high resolution sensitive spectroscopy is therefore highly desirable. A solution to this challenging problem may be found in the multiplex high resolution spectral analysis using the newly developed femtosecond mode-locked lasers and frequency comb sources.

In this paper, we report the implementation of a new spectrometric method based on a femtosecond laser taking the full benefit of the direct access to the mid-infrared wavelength range. We apply the first femtosecond solid-state mode-locked laser source in the molecular fingerprint region above 2 µm to high resolution spectroscopy. The radiation of a Cr2+:ZnSe mode-locked laser is absorbed by the gas sample and analyzed by a commercial Fourier transform (FT) spectrometer. Examples of acetylene and ammonia spectra covering up to 380 cm-1 in the 4150 cm-1 region are shown.

2. Experiment

Fig. 1. Experimental set-up. CM: chirped mirror. OC: output coupler. Atten: attenuator.

The first sub-ps mode-locked operation of Cr2+:ZnSe lasers has been reported recently [8

8. I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe Laser,” CLEO/QELS, Technical Digest on CD, (Optical Society of America, 2006) paper CMQ2.

], with pulse duration down to 80 fs at 80 mW of output power [9

9. I. T. Sorokina and E. Sorokin, “Chirped-mirror dispersion controlled Femtosecond Cr:ZnSe Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WA7.

,10

10. I. T. SorokinaM. Ebrahim-Zadeh and I. T. Sorokina, “Broadband mid-infrared solid-state lasers,” in Mid-Infrared Coherent Sources and Applications, eds., (Springer-Verlag2007), pp. 225–260.

]. In the present experiment, we have set up a prismless femtosecond laser following the design of Ref. [9

9. I. T. Sorokina and E. Sorokin, “Chirped-mirror dispersion controlled Femtosecond Cr:ZnSe Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WA7.

], optimized for a long-term hands-free stable operation. The laser is based on a 4 mm thick Brewster-cut Cr2+:ZnSe crystal (Fig. 1). The crystal temperature is maintained at 20.5 °C by a recirculating water chiller system. The astigmatically compensated X-fold cavity consists of 75-mm and 100-mm radius-of-curvature dichroic mirrors, a 50-mm radius of curvature chirped mirror focusing the light onto an InAs/GaSb semiconductor saturable absorber mirror (SESAM), and an output coupler with transmission of 2 % at 4100 cm-1. Optical pumping is achieved with a 1607 nm Er-doped fiber laser, focused onto the crystal by an uncoated lens of 40 mm focal length. The self-starting mode-locking results from the use of the SESAM, which has several hundreds of picoseconds relaxation time. Dispersion compensation is provided by a combination of a 6.5 mm thick uncoated YAG plate and the spherical chirped mirror. Combined with the dispersion of the Cr:ZnSe active medium, this provides about -1500 fs2 total round-trip group delay dispersion (GDD), which is practically constant over 500 cm-1. The cavity length is about 75 cm, corresponding to 200 MHz pulse repetition rate.

In order to get rid of the strong absorption lines of water vapor, which are present in the vicinity of 2.4 µm, the oscillator is placed inside a sealed enclosure. The enclosure is equipped with windows made of BK7 on the Er:fiber laser side and of CaF2 on the Cr2+:ZnSe laser output side. The enclosure is first evacuated under primary vacuum conditions and then filled with dry nitrogen. Under these conditions, with 1.9 W of pumping power, stable mode-locked operation is obtained during hours with ~50 mW average output power. The main stability limitation has been identified as arising from temperature increase of the SESAM heatsink, which was not attached to the cooling circuit, and resulted in slow decrease of the output power (and pulse broadening) during the laser operation. Fig. 2 provides a low resolution (30 GHz - 1 cm-1) spectrum and an interferometric autocorrelation trace of the laser pulses. The full width at half maximum (FWHM) of the autocorrelation trace is 250 fs, which leads to a pulse width of the order of 130 fs, consistent with the 76 cm-1 measured FWHM of the corresponding spectrum, which has almost perfect sech2 profile, as shown on Fig. 2. The pulse duration could be decreased by dispersion optimization [9

9. I. T. Sorokina and E. Sorokin, “Chirped-mirror dispersion controlled Femtosecond Cr:ZnSe Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WA7.

], but we opted to improve the operation stability by providing some additional negative GDD.

Fig. 2. (a). Spectrum (FWHM: 76 cm-1) and (b) interferometric autocorrelation (FWHM: 250 fs) of a 130-fs pulse of the Cr2+:ZnSe mode-locked laser. Pump power: 1.9 W, output power: 50 mW, repetition rate 200 MHz.

After the exit window, the laser pulses pass through a 70 cm-long single-pass absorption cell, filled with the gas of interest, and ~5 m of open-air propagation before finally reaching the spectrometer. The laser radiation is analyzed by a commercial FT spectrometer (max. resolution 0.12 cm-1) equipped with a fluorine beam-splitter and a thermoelectrically cooled InAs detector. The laser beam has to be attenuated in order not to saturate the detector.

Fig. 3. Part of a C2H2 spectrum at 0.12 cm-1 resolution in the 2.4 µm region. The baseline modulation is not noise-related but due to a channel spectrum from an unwedged window. The strongest spectral features are the P, Q and R branches of the ν11 5 band [12] of 12C2H2, centered at 4090 cm-1. The intensity alternation is obvious in the R-branch. The upper left inset is a zoom showing acetylene and residual water vapor lines coming from a 5 meters air path between the cell and the interferometer. The H2O lineshapes reveal an atmospheric-pressure broadening. The rotational assignment for the H2O lines [13] gives (J,K a,K c).

As a first demonstration of the capabilities of the source for broadband absorption spectroscopy, the rovibrational spectra of acetylene and ammonia have been recorded around 4150 cm-1. Figure 3 gives an illustration of the C2H2 spectrum, in the region of the ν11 5 band [12

12. R. D’Cunha, Y. A. Sarma, G. Guelachvili, R. Farrenq, Q. Kou, V. M. Devi, D. C. Benner, and K. N. Rao, “Analysis of the high-resolution spectrum of acetylene in the 2.4 µm region,” J. Mol. Spectrosc. 148, 213–225 (1991). [CrossRef]

]. The full width at half maximum of the spectrum is 75 cm-1. Resolution is limited by the spectrometer to 3.6 GHz (0.12 cm-1). With the total recording time T=13 s we benefit from an uppermost SNR better than 3800. With spectral boundaries defined by a SNR relatively degraded by a factor 1000, the spectral range extends over 380 cm-1, from 3980 cm-1 to 4360 cm-1. This corresponds to a number of spectral elements M equal to 3167. The cell is filled with acetylene at 23 hPa (17 Torr) pressure. The absorption lines shown on Fig. 3 are due to the acetylene bands and the water vapor lines [13

13. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005). [CrossRef]

] from the open-air propagation. Figure 4 displays a portion of a NH3 recorded absorption spectrum, with a NH3 pressure equal to 261 hPa (196 Torr). The spectral lines of ammonia belong to the ν12 and ν23 rovibrational combination bands [14

14. Š. Urban, N. Tu, K. Narahari Rao, and G. Guelachvili, “Analysis of high-resolution Fourier transform spectra of 14NH3 at 2.3 µm,” J. Mol. Spectrosc. 133, 312–330 (1989). [CrossRef]

]. As the spectrum is complex and crowded, high resolution is essential to discriminate against the various lines. The recording conditions are the same as for the acetylene spectrum.

3. Results and discussion

In these spectra, the noise equivalent absorption coefficient (NEA) reaches 3.7×10-6 cm-1. NEA at one second averaging per spectral element (L×SNR)-1×(T/M)1/2=2.4×10-7 cm-1. Hz-1/2, where L is the absorption path length. In the present spectral region, this level of sensitivity allows for the high resolution detection of 22 parts per billion by volume (ppbv) of C2H2, and 160 ppbv of NH3 at 1 s of integration time per spectral element. These detection limit values are still relatively high because the combination bands of C2H2 and NH3 in this region are weak: their intensity, of the order of 10-21 cm·molecule-1, is not higher than in the 1.5 µm region. For hydrogen fluoride HF (1-0 band, with intensity of the R(2) line at 4075 cm-1 equal to 2.3·10-18 cm·molecule-1 [13

13. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005). [CrossRef]

]), the corresponding detection level is 200 parts per trillion by volume (pptv) in the 2.4 µm spectral region.

Fig. 4. Spectrum of NH3 in the 2.4 µm region illustrating the spectral bandwidth and SNR capabilities of the spectrometric technique. The ν12 and ν23 combination bands are observed. The upper graph shows the whole spectral domain covered in a singe recording while the lower graph shows a portion expanded in wavenumber and intensity scales.

For a fair comparison, we recorded a spectrum using a traditional tungsten lamp, which is the most widely used broadband source in the near-and mid-infrared absorption FTS. Under identical experimental conditions, the SNR was degraded by about 17. The recording time would have then been 300 times longer to get identical results. This is not surprising as this 50 mW femtosecond laser source has a spectral radiance which is about 2.8·105 times stronger than a 3000 K blackbody source. Actually, a signal-to-noise ratio enhancement of about 500 should be achieved. This could not be demonstrated in the present experiment: as the 50 mW power of the laser saturates the detector, we had to attenuate the beam by more than two orders of magnitude before entering in the interferometer. To make a proper use of the abundant power, one should e.g. employ a classical multipass cell. In this case increase of the absorption path by more than two orders of magnitude would then improve the sensitivity by the same factor, without lowering the SNR.

It is also interesting to compare our experimental results with a recent near-infrared comb-based experiment [2

2. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm,” Opt. Lett. 32, 307–309 (2007). [CrossRef] [PubMed]

]. By coupling a 1550 nm Er-fiber based frequency comb to a cavity with a finesse higher than 3100, Ref. [2

2. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm,” Opt. Lett. 32, 307–309 (2007). [CrossRef] [PubMed]

] obtains a NEA at one second averaging equal to 2·10-8 cm-1.Hz-1/2, with an equivalent absorption path length higher than 3000 m. This absorption path length is about 4300 times higher than ours whereas the resulting sensitivity is only one order of magnitude better. Moreover, the resolution of the grating spectrometer is limited to 25 GHz. The acquisition of a broad spectral domain is a sequential, long and inaccurate process, whereas in the present experiment, 13 seconds are enough to measure simultaneously 3167 individual spectral elements spanning 380 cm-1, that are only limited by the laser emission, at 3.6 GHz resolution. Actually, during these 13 seconds, the FT spectrometer samples a 15800 cm-1 broad spectral domain by 131650 independent spectral elements. A more detailed discussion of the advantages of using a FT spectrometer for this kind of experiments may be found in [1

1. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, “Femtosecond laser Fourier transform absorption spectroscopy,” Opt. Lett. 32, 1677–1679 (2007). [CrossRef] [PubMed]

].

Further improvements of the present experiment can be made in several directions. The resolution can easily be improved up to the Doppler width of the lines by using a higher resolution interferometer. It is also possible to significantly increase the measured spectral domain. The enormous gain bandwidth of the Cr2+:ZnSe laser (850 nm FWHM) allows indeed coverage of a much broader spectral region, either by tuning, or more interestingly by construction of a few-cycle laser source to observe hundreds of nm simultaneously. Judging from the demonstrated cw tuning range of 2000–3100 nm [16

16. E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband Infrared Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690–712 (2005). [CrossRef]

], coverage of the entire 2–3 µm region is feasible in a Kerr-lens modelocked configuration with proper mirrors [10

10. I. T. SorokinaM. Ebrahim-Zadeh and I. T. Sorokina, “Broadband mid-infrared solid-state lasers,” in Mid-Infrared Coherent Sources and Applications, eds., (Springer-Verlag2007), pp. 225–260.

]. Alternatively, generation of a mid-infrared supercontinuum in highly nonlinear fibers looks promising, as we demonstrated it recently in the near infrared spectral region [15

15. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Infrared frequency combs and supercontinua for multiplex high sensitivity spectroscopy,” Annales de Physique, submitted (2007). [CrossRef]

]. Using of a broadband source is especially attractive for FT spectroscopy, where measurement time is independent of the spectral domain width. As discussed above, sensitivity improvement can benefit from absorption path length enhancement either by use of a classical multipass cell or by injection of a fs frequency comb in a high finesse cavity. Use of a comb can bring additional sensitivity gain by performing high frequency synchronous detection, which also leads to the advantage of allowing simultaneous measurement of the absorption and dispersion associated with the spectral features, as experimentally established in [6

6. J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called “Doppler-limited multiplex frequency comb spectrometry.”

].

4. Conclusion

Summarizing, we have demonstrated the first spectroscopic application of a mid-infrared femtosecond mode-locked laser used as a broadband infrared source with a high resolution FT spectrometer. This simple experimental setup already exhibits high sensitivity and resolution over a broad spectral domain. Sub-ppb detection levels should be easily obtained for a large panel of molecules thanks to absorption path length enhancement and high frequency detection. Further improvements in resolution and acquisition time are also in progress. This will include taking advantage of the comb structure of a stabilized mode-locked Cr2+:ZnSe laser by combination of the complementary methods developed in [4

4. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown Spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006). [CrossRef] [PubMed]

] and in [6

6. J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called “Doppler-limited multiplex frequency comb spectrometry.”

].

Acknowledgments

P. Jacquet (Laboratoire de Photophysique Moléculaire, Orsay) is warmly thanked for his participation to the experiments. I. T. Sorokina acknowledges Université Paris-Sud for a position of invited professor. This work is accomplished in the framework of the Programme Pluri-Formation de l’Université Paris-Sud “Détection de traces de gaz” 2006–2009 and the Austrian Fonds zur Förderung der wissenschaftlichen Forschung project P17973.

References and links

1.

J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, “Femtosecond laser Fourier transform absorption spectroscopy,” Opt. Lett. 32, 1677–1679 (2007). [CrossRef] [PubMed]

2.

M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, “Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm,” Opt. Lett. 32, 307–309 (2007). [CrossRef] [PubMed]

3.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007). [CrossRef] [PubMed]

4.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown Spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595–1599 (2006). [CrossRef] [PubMed]

5.

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005). [CrossRef] [PubMed]

6.

J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called “Doppler-limited multiplex frequency comb spectrometry.”

7.

J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007). [CrossRef] [PubMed]

8.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe Laser,” CLEO/QELS, Technical Digest on CD, (Optical Society of America, 2006) paper CMQ2.

9.

I. T. Sorokina and E. Sorokin, “Chirped-mirror dispersion controlled Femtosecond Cr:ZnSe Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WA7.

10.

I. T. SorokinaM. Ebrahim-Zadeh and I. T. Sorokina, “Broadband mid-infrared solid-state lasers,” in Mid-Infrared Coherent Sources and Applications, eds., (Springer-Verlag2007), pp. 225–260.

11.

N. Picqué, F. Gueye, G. Guelachvili, E. Sorokin, and I. T. Sorokina, “Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser,” Opt. Lett. 30, 3410–3412 (2005). [CrossRef]

12.

R. D’Cunha, Y. A. Sarma, G. Guelachvili, R. Farrenq, Q. Kou, V. M. Devi, D. C. Benner, and K. N. Rao, “Analysis of the high-resolution spectrum of acetylene in the 2.4 µm region,” J. Mol. Spectrosc. 148, 213–225 (1991). [CrossRef]

13.

L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quantum Spectrosc. Radiat. Transf. 96, 139–204 (2005). [CrossRef]

14.

Š. Urban, N. Tu, K. Narahari Rao, and G. Guelachvili, “Analysis of high-resolution Fourier transform spectra of 14NH3 at 2.3 µm,” J. Mol. Spectrosc. 133, 312–330 (1989). [CrossRef]

15.

J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Infrared frequency combs and supercontinua for multiplex high sensitivity spectroscopy,” Annales de Physique, submitted (2007). [CrossRef]

16.

E. Sorokin, S. Naumov, and I. T. Sorokina, “Ultrabroadband Infrared Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 690–712 (2005). [CrossRef]

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6390) Spectroscopy : Spectroscopy, molecular
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 15, 2007
Revised Manuscript: November 20, 2007
Manuscript Accepted: November 24, 2007
Published: November 29, 2007

Citation
E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picque, "Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser," Opt. Express 15, 16540-16545 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, "Femtosecond laser Fourier transform absorption spectroscopy," Opt. Lett. 32, 1677-1679 (2007). [CrossRef] [PubMed]
  2. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 μm," Opt. Lett. 32, 307-309 (2007). [CrossRef] [PubMed]
  3. S. A. Diddams, L. Hollberg, and V. Mbele, "Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb," Nature 445, 627-630 (2007). [CrossRef] [PubMed]
  4. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown Spectroscopy for sensitive and rapid molecular detection," Science 311, 1595-1599 (2006). [CrossRef] [PubMed]
  5. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005). [CrossRef] [PubMed]
  6. J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called "Doppler-limited multiplex frequency comb spectrometry."
  7. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15, 11385-11395 (2007). [CrossRef] [PubMed]
  8. I. T. Sorokina, E. Sorokin, and T. Carrig, "Femtosecond pulse generation from a SESAM mode-locked Cr:ZnSe Laser," CLEO/QELS, Technical Digest on CD, (Optical Society of America, 2006) paper CMQ2.
  9. I. T. Sorokina and E. Sorokin, "Chirped-mirror dispersion controlled Femtosecond Cr:ZnSe Laser," in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper WA7.
  10. I. T. Sorokina, "Broadband mid-infrared solid-state lasers," in Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, eds., (Springer-Verlag 2007), pp. 225-260.
  11. N. Picqué, F. Gueye, G. Guelachvili, E. Sorokin, and I. T. Sorokina, "Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser," Opt. Lett. 30, 3410-3412 (2005). [CrossRef]
  12. R. D'Cunha, Y. A. Sarma, G. Guelachvili, R. Farrenq, Q. Kou, V. M. Devi, D. C. Benner, and K. N. Rao, "Analysis of the high-resolution spectrum of acetylene in the 2.4 μm region," J. Mol. Spectrosc. 148, 213-225 (1991). [CrossRef]
  13. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quantum Spectrosc. Radiat. Transf. 96, 139-204 (2005). [CrossRef]
  14. Š. Urban, N. Tu, K. Narahari Rao, and G. Guelachvili, "Analysis of high-resolution Fourier transform spectra of 14NH3 at 2.3 μm," J. Mol. Spectrosc. 133, 312-330 (1989). [CrossRef]
  15. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, "Infrared frequency combs and supercontinua for multiplex high sensitivity spectroscopy," Annales de Physique, submitted (2007). [CrossRef]
  16. E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband Infrared Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 690-712 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited