OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17371–17379
« Show journal navigation

Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides

Svetlana V. Boriskina  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17371-17379 (2007)
http://dx.doi.org/10.1364/OE.15.017371


View Full Text Article

Acrobat PDF (1206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rigorous simulations of bent and branched sections of coupled resonator optical waveguides (CROWs) composed of side-coupled whispering gallery (WG) mode microdisks are performed. Pre- and post-fabrication tuning capability of the designed structures is explored, and a novel concept of realization of tunable CROW-based routers and switches is introduced. The proposed tuning mechanism exploits the properties of CROW optical modes coupling with avoided crossing scenario rather than the previously used Vernier effect. Applications of spectrally-engineered branched CROW structures for controllable manipulation of coupling between spatially separated nano-emitters are also discussed.

© 2007 Optical Society of America

1. Introduction

Since a concept of the coupled-resonator optical waveguide (CROW) was introduced nearly a decade ago [1

1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]

], such structures have been explored in a variety of material platforms and resonator types, including photonic-crystal defect cavities, microspheres, microdisks, and Fabry-Perot resonators. This research effort has been fueled by the interest in their various potential applications encompassing light slowing and storage [2

2. J. E. Heebner and R. W. Boyd, “‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002). [CrossRef]

6

6. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71 (2006). [CrossRef]

], detection and measurement of rotation [7

7. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [CrossRef] [PubMed]

], group velocity compensation [8

8. S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30, 2406–2408 (2005). [CrossRef] [PubMed]

], etc. Optical characteristics of infinite CROW chains composed of identical microcavities have been extensively investigated and are well understood by now, and the focus of attention has recently shifted to studying more realistic finite-size CROWs with structural disorder [9

9. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). [CrossRef]

14

14. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007). [CrossRef]

]. Furthermore, potential capability of coupled-resonator waveguides to guide light around sharp corners [1

1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]

] requires further detailed investigation [14

14. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007). [CrossRef]

, 15

15. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31, 389–391 (2006). [CrossRef] [PubMed]

]. These new avenues of research not only provide estimates of the CROW fabrication tolerances [9

9. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). [CrossRef]

, 12

12. S. Mookherjea, “Spectral characteristics of coupled resonators,” J. Opt. Soc. Am. B 23, 1137–1145 (2006). [CrossRef]

, 13

13. B. Moeller, U. Woggon, and M. V. Artemyev, “Bloch modes and disorder phenomena in coupled resonator chains,” Phys. Rev. B 75, 245327 (2007). [CrossRef]

] but also offer ways to optimize the properties of coupled-cavity structures at the pre-fabrication design stage by tuning their geometrical configurations [14

14. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007). [CrossRef]

, 16

16. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006). [CrossRef] [PubMed]

18

18. S. V. Boriskina, “Coupling of WG modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 321557–1559 (2007). [CrossRef] [PubMed]

].

High-Q optical microcavities and coupled-cavity structures also hold high promise for the development of dynamically-tunable optical devices with extraordinarily small footprints. Variations in the microcavities refractive indices can be induced by using various physical mechanisms including free-carrier-plasma dispersion, thermo-optic and electro-optic effects. As has been shown both theoretically and experimentally, the effect of cavity refractive index change on the cavity spectral characteristics is significantly enhanced owing to the tight field confinement and long photon lifetimes in such cavities [19

19. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol. 23, 1800–1807 (2005). [CrossRef]

22

22. M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–729 (2005). [CrossRef]

]. This makes possible realization of optical bistability in very compact integrated structures with relatively low power. Manipulation of optical bistability adds new functionalities to resonator-based optical devices such as signal modulation, switching, and memory functions, already demonstrated in the case of waveguide-coupled microresonator-based add/drop filters [22

22. M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–729 (2005). [CrossRef]

27

27. K. Djordjev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002). [CrossRef]

], double-cavity photonic molecule lasers [18

18. S. V. Boriskina, “Coupling of WG modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 321557–1559 (2007). [CrossRef] [PubMed]

, 28

28. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209 (2004). [CrossRef] [PubMed]

, 29

29. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum. Electron. 12, 71–77 (2006). [CrossRef]

], and multiple-resonator high-order filters [19

19. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol. 23, 1800–1807 (2005). [CrossRef]

, 30

30. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline WG-mode resonators,” IEEE Photon. Technol. Lett. 17, 136–138 (2005). [CrossRef]

]. Here, I propose and theoretically explore CROW configurations with bends and branches, which can be pre-designed to enable easy modulation of the electromagnetic energy flow through them by using various external control impacts that cause the change of microcavities effective refractive index. Potential applications of coupled-cavity structures proposed and studied in this paper encompass CROW routers and splitters as well as dynamically-tunable coupled-microdisk photonic structures in which optical coupling between two spatially separated nano-emitters, e.g. quantum dots, can be manipulated in a controllable manner.

2. Optical modes in finite-size coupled-microdisk CROW sections

Fig. 1. Splitting of WG12, 1 modes in a straight CROW section composed of 7 microdisks of 2.8-µm diameters with the decrease of the inter-cavity airgap width w: (a) shift of resonant wavelengths and (b) degradation of the mode Q-factors. Near-field portraits of two blue-shifted anti-bonding modes (EE-mode, black dashed line in Figs. 1(a,b) and OO-mode, black solid line in Figs. 1(a,b)) are plotted in Figs. 1(c) and 1(d), respectively (w=100 nm).

3. Engineering low-loss CROW bends

Fig. 2. Variations of the resonant wavelengths (a) and Q-factors (b) of the EE (blue lines) and OO (red lines) anti-bonding CROW modes with the change of the CROW bend angle from 0 to 90 degrees. The CROW consists of the microdisks with the same parameters as those in Fig. 1 coupled via 100-nm airgaps. The inset shows a sketch of the bent CROW section. The bend angle is measured from the x axis. The field patterns of the EE mode (c) and OO mode (d) in the bend region correspond to the bend angle of 62 degrees.

4. Switching in branched CROW sections

We have previously shown [14

14. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007). [CrossRef]

] that CROW bend losses can be minimized for any value of the bend angle by tuning the size of the resonator positioned at the bend. Here, a possibility of post-fabrication tuning of bent and branched CROW sections and of designing switchable optical elements by changing the material parameters of the central disk rather than its size is explored. To keep the following discussion general, no specific physical effect causing the refractive index change Δn is considered, though each of them has a specific index perturbation signature [19

19. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol. 23, 1800–1807 (2005). [CrossRef]

].

Fig. 3. Change in the CROW modes resonant wavelengths (a) and Q-factors (b) with the change in the effective refractive index of the microdisk positioned at the CROW branching point. The inset shows a sketch of the branched CROW section (n eff=2.9, D=2.8 µm, w=0.1 µm, β 1=60°, β 2=45°).
Fig. 4. (594 KB) Movie of the optical near-field transformation of the higher-Q mode in the branched CROW section with the same geometry as in Fig. 3 under the perturbation of the refractive index of the central microdisk. [Media 1]

In Figs. 3 and 5 two possible designs of switchable CROW-based devices that enable splitting of waves or pulses into two output waveguide ports or routing all the energy into a single port are considered. In both cases, the branches bend angle values (β 1 and β 2) were chosen such that the bend losses are minimized. Fig. 3 shows how the change of the effective refractive index of the central microdisk affects the resonant wavelengths and the Q-factors of the anti-bonding WG12, 1 CROW modes. In can be seen that the two modes couple with the avoided crossing scenario (real parts of their complex eigenfrequencies repel each other and the imaginary parts cross at the coupling point [35

35. W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E , 61, 929–932 (2000). [CrossRef]

]). An additional point of avoided level crossing with one of the red-shifted low-Q CROW modes is observed in Fig. 5. Note that in this section the term “modes coupling” refers to the interactions among complex eigenfrequencies of the spectrally-resolved CROW modes under the change of the CROW structural parameters rather than to electromagnetic coupling between WG-modes of individual resonators. Coupling of eigenstates of optical microcavities, photonic molecules, and coupled-resonator waveguides can lead to undesired effects, such as degradation of the working mode Q-factor [36

36. J. -J. Li, J. -X. Wang, and Y. -Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563–1565 (2007). [CrossRef] [PubMed]

]. In properly configured deformed-cavity or coupled-cavity configurations, however, this effect can be exploited either to enhance useful mode features, e.g., to increase the working mode quality factor [16

16. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006). [CrossRef] [PubMed]

18

18. S. V. Boriskina, “Coupling of WG modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 321557–1559 (2007). [CrossRef] [PubMed]

, 37

37. J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]

], or to realize optical switching functionality [18

18. S. V. Boriskina, “Coupling of WG modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 321557–1559 (2007). [CrossRef] [PubMed]

, 29

29. S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum. Electron. 12, 71–77 (2006). [CrossRef]

].

Fig. 5. Same as in Fig. 3 for the CROW section with β 1=0°, β 2=60°.
Fig. 6. (748 KB) Same as in Fig. 4 for the CROW section with β 1=0°, β 2=60°. [Media 2]

Fig. 7. (723 KB) Movie of the optical near-field transformation of the lower-Q mode in the branched CROW section with the same geometry as in Fig. 5 under the perturbation of the refractive index of the central microdisk. [Media 3]

Finally, it should be noted that switching between two optical states in a branched CROW section can be used not only for energy routing and splitting but also for realization of a dynamical control of coupling between two spatially separated quantum dots (QDs) placed in two microcavities belonging to different CROW branches. The interaction between two QDs can be achieved by switching the upper branch of the CROW section in Figs. 5, 6 on and off. The proposed structure has several advantages over the previously explored for this purpose photonic molecule composed of two coupled micropillar cavities of different diameters [40

40. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-8191 [CrossRef] [PubMed]

]. First, both CROW modes (one having field localized in a lower CROW arm and the other with the whole CROW section switched on) have high Q-factors and almost identical resonant frequencies. Second, the area to which external control impacts are to be applied to achieve switching between two optical states (namely, disk 3) can be spatially separated from the areas used for the readout process, where emitters are located (e.g., disks 4 and 5 adjacent to disk 3 and located in the lower and the upper CROW branches, respectively).

5. Conclusions

Using rigorous boundary-integral-equations theory, spectral properties of coupled-resonator optical waveguide sections with bends and branches composed of high-index-contrast thin-disk resonators of ~3 µm in diameter were simulated at λ=1.55 µm. Through computer modeling, optimal CROW configurations were designed that minimize bend radiation losses and enable modulation of the electromagnetic energy flow along the structure by a change in the microcavity refractive index in the 1÷5×10-3 range. Switching functionality in such structures is achieved by exploiting the features of the complex eigenmodes energy levels coupling with the avoided crossing scenario under the change of the CROW structural and material parameters. Spectrally-designed tunable structures based on coupled microdisk resonators are expected to find applications as dynamic low-power routers and splitters, optical memory elements, and switchable structures for manipulation of optical coupling between two or more spatially separated nano-emitters.

Acknowledgements

The author is grateful to Trevor Benson and Ana Vukovic of the University of Nottingham, Sergei Tarapov and Vadim Derkach of Kharkov Institute of Radiophysics and Electronics NASU, and Andrea Melloni of Politecnico di Milano for useful discussions and advice.

References and links

1.

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]

2.

J. E. Heebner and R. W. Boyd, “‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002). [CrossRef]

3.

A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003). [CrossRef]

4.

J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004). [CrossRef]

5.

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006). [CrossRef]

6.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71 (2006). [CrossRef]

7.

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96, 053901 (2006). [CrossRef] [PubMed]

8.

S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30, 2406–2408 (2005). [CrossRef] [PubMed]

9.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). [CrossRef]

10.

B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30, 2116–2118 (2005). [CrossRef] [PubMed]

11.

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14, 9460–9466 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9460 [CrossRef] [PubMed]

12.

S. Mookherjea, “Spectral characteristics of coupled resonators,” J. Opt. Soc. Am. B 23, 1137–1145 (2006). [CrossRef]

13.

B. Moeller, U. Woggon, and M. V. Artemyev, “Bloch modes and disorder phenomena in coupled resonator chains,” Phys. Rev. B 75, 245327 (2007). [CrossRef]

14.

S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25, 2487–2494 (2007). [CrossRef]

15.

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31, 389–391 (2006). [CrossRef] [PubMed]

16.

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31, 338–340 (2006). [CrossRef] [PubMed]

17.

S. V. Boriskina, T. M. Benson, and P. Sewell, “Photonic molecules made of matched and mismatched micro-cavities: new functionalities of microlasers and optoelectronic components,” Proc. SPIE 6452, 64520X (2007). [CrossRef]

18.

S. V. Boriskina, “Coupling of WG modes in size-mismatched microdisk photonic molecules,” Opt. Lett. 321557–1559 (2007). [CrossRef] [PubMed]

19.

S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol. 23, 1800–1807 (2005). [CrossRef]

20.

M. Beaugeois, B. Pinchemel, M. Bouazaoui, M. Lesecq, S. Maricot, and J. P. Vilcot, “All-optical tunability of InGaAsP/InP microdisk resonator by infrared light irradiation,” Opt. Lett. 32, 35–37 (2007). [CrossRef]

21.

T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of SOI optical ring resonators,” J. Lightwave Technol. 23, 4215–4221 (2005). [CrossRef]

22.

M. Lipson, “Switching light on a silicon chip,” Opt. Mater. 27, 731–729 (2005). [CrossRef]

23.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]

24.

M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted SOI microring resonators,” Opt. Lett. 32, 2046–2048 (2007). [CrossRef] [PubMed]

25.

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14, 6851–6857 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6851 [CrossRef] [PubMed]

26.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005). [CrossRef]

27.

K. Djordjev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 828–830 (2002). [CrossRef]

28.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432, 206–209 (2004). [CrossRef] [PubMed]

29.

S. Ishii, A. Nakagawa, and T. Baba, “Modal characteristics and bistability in twin microdisk photonic molecule lasers,” IEEE J. Sel. Top. Quantum. Electron. 12, 71–77 (2006). [CrossRef]

30.

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “High-order tunable filters based on a chain of coupled crystalline WG-mode resonators,” IEEE Photon. Technol. Lett. 17, 136–138 (2005). [CrossRef]

31.

A. Morand, Y. Zhang, B. Martin, K.P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J.-M. Fédéli, “Ultra-compact microdisk resonator filters on SOI substrate,” Opt. Express 14, 12814–12821 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-26-12814 [CrossRef] [PubMed]

32.

M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15, 4694–4704 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4694 [CrossRef] [PubMed]

33.

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005). [CrossRef]

34.

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing,” IEEE J. Sel. Top. Quantum. Electron. 12, 78–85 (2006). [CrossRef]

35.

W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E , 61, 929–932 (2000). [CrossRef]

36.

J. -J. Li, J. -X. Wang, and Y. -Z. Huang, “Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks,” Opt. Lett. 32, 1563–1565 (2007). [CrossRef] [PubMed]

37.

J. Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]

38.

A. Melloni, F. Morichetti, G. Cusmai, R. Costa, A. Breda, C. Canavesi, and M. Martinelli, “Progress in large integration scale circuits in SiON technology,” in Proceedings of 9th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, 2007), pp. 223–226. [CrossRef]

39.

S. V. Pishko and S. V. Boriskina, “Theory and numerical design of coupled-resonator optical waveguide sections with bends,” Proc. SPIE 6645, 664521 (2007). [CrossRef]

40.

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191–8196 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-8191 [CrossRef] [PubMed]

OCIS Codes
(230.7370) Optical devices : Waveguides
(140.3945) Lasers and laser optics : Microcavities
(230.4555) Optical devices : Coupled resonators
(250.6715) Optoelectronics : Switching

ToC Category:
Novel Concepts and Theory

History
Original Manuscript: October 2, 2007
Revised Manuscript: October 30, 2007
Manuscript Accepted: October 30, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Citation
Svetlana V. Boriskina, "Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides," Opt. Express 15, 17371-17379 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  2. J. E. Heebner and R. W. Boyd, "'Slow' and 'fast' light in resonator-coupled waveguides," J. Mod. Opt. 49, 2629-2636 (2002). [CrossRef]
  3. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  4. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  5. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Appl. Phys. Lett. 89, 041122 (2006). [CrossRef]
  6. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics 1, 65-71 (2006). [CrossRef]
  7. J. Scheuer and A. Yariv, "Sagnac effect in coupled-resonator slow-light waveguide structures," Phys. Rev. Lett. 96, 053901 (2006). [CrossRef] [PubMed]
  8. S. Mookherjea, "Dispersion characteristics of coupled-resonator optical waveguides," Opt. Lett. 30, 2406-2408 (2005). [CrossRef] [PubMed]
  9. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004). [CrossRef]
  10. B. M. Möller, U. Woggon, and M. V. Artemyev, "Coupled-resonator optical waveguides doped with nanocrystals," Opt. Lett. 30, 2116-2118 (2005). [CrossRef] [PubMed]
  11. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, "The effects of inter-cavity separation on optical coupling in dielectric bispheres," Opt. Express 14, 9460-9466 (2006). [CrossRef] [PubMed]
  12. S. Mookherjea, "Spectral characteristics of coupled resonators," J. Opt. Soc. Am. B 23, 1137-1145 (2006). [CrossRef]
  13. B. Moeller, U. Woggon, and M. V. Artemyev, "Bloch modes and disorder phenomena in coupled resonator chains," Phys. Rev. B 75, 245327 (2007). [CrossRef]
  14. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends," J. Lightwave Technol. 25, 2487-2494 (2007). [CrossRef]
  15. Z. Chen, A. Taflove, and V. Backman, "Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres," Opt. Lett. 31, 389-391 (2006). [CrossRef] [PubMed]
  16. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006). [CrossRef] [PubMed]
  17. S. V. Boriskina, T. M. Benson, and P. Sewell, "Photonic molecules made of matched and mismatched micro-cavities: new functionalities of microlasers and optoelectronic components," Proc. SPIE 6452, 64520X (2007). [CrossRef]
  18. S. V. Boriskina, "Coupling of WG modes in size-mismatched microdisk photonic molecules," Opt. Lett. 321557-1559 (2007). [CrossRef] [PubMed]
  19. S. J. Emelett and R. Soref, "Design and simulation of silicon microring optical routing switches," J. Lightwave Technol. 23, 1800-1807 (2005). [CrossRef]
  20. M. Beaugeois, B. Pinchemel, M. Bouazaoui, M. Lesecq, S. Maricot, and J. P. Vilcot, "All-optical tunability of InGaAsP/InP microdisk resonator by infrared light irradiation," Opt. Lett. 32, 35-37 (2007). [CrossRef]
  21. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, "Analysis of the tuning sensitivity of SOI optical ring resonators," J. Lightwave Technol. 23, 4215-4221 (2005). [CrossRef]
  22. M. Lipson, "Switching light on a silicon chip," Opt. Mater. 27, 731-729 (2005). [CrossRef]
  23. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  24. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, "High-speed all-optical switching in ion-implanted SOI microring resonators," Opt. Lett. 32, 2046-2048 (2007). [CrossRef] [PubMed]
  25. L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006). [CrossRef] [PubMed]
  26. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for gigabit filtering in access networks," IEEE Photon. Technol. Lett. 17, 336-338 (2005). [CrossRef]
  27. K. Djordjev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photon. Technol. Lett. 14, 828-830 (2002). [CrossRef]
  28. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004). [CrossRef] [PubMed]
  29. S. Ishii, A. Nakagawa, and T. Baba, "Modal characteristics and bistability in twin microdisk photonic molecule lasers," IEEE J. Sel. Top. Quantum. Electron. 12, 71-77 (2006). [CrossRef]
  30. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, "High-order tunable filters based on a chain of coupled crystalline WG-mode resonators," IEEE Photon. Technol. Lett. 17, 136-138 (2005). [CrossRef]
  31. A. Morand, Y. Zhang, B. Martin, K.P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J.-M. Fédéli, "Ultra-compact microdisk resonator filters on SOI substrate," Opt. Express 14, 12814-12821 (2006). [CrossRef] [PubMed]
  32. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics," Opt. Express 15, 4694-4704 (2007). [CrossRef] [PubMed]
  33. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, "Cold-cavity thresholds of microdisks with uniform and nonuniform gain: quasi-3-D modeling with accurate 2-D analysis," IEEE J. Sel. Top. Quantum Electron. 11, 1135-1142 (2005). [CrossRef]
  34. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, "Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing," IEEE J. Sel. Top. Quantum. Electron. 12, 78-85 (2006). [CrossRef]
  35. W. D. Heiss, "Repulsion of resonance states and exceptional points," Phys. Rev. E,  61, 929-932 (2000). [CrossRef]
  36. J. -J. Li, J. -X. Wang, and Y. -Z. Huang, "Mode coupling between first- and second-order whispering-gallery modes in coupled microdisks," Opt. Lett. 32, 1563-1565 (2007). [CrossRef] [PubMed]
  37. J. Wiersig, "Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities," Phys. Rev. Lett. 97, 253901 (2006). [CrossRef]
  38. A. Melloni, F. Morichetti, G. Cusmai, R. Costa, A. Breda, C. Canavesi, and M. Martinelli, "Progress in large integration scale circuits in SiON technology," in Proceedings of 9th International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineers, 2007), pp. 223-226. [CrossRef]
  39. S. V. Pishko and S. V. Boriskina, "Theory and numerical design of coupled-resonator optical waveguide sections with bends," Proc. SPIE 6645, 664521 (2007). [CrossRef]
  40. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, and M. Hetterich, "Localized and delocalized modes in coupled optical micropillar cavities," Opt. Express 15, 8191-8196 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (595 KB)     
» Media 2: MOV (748 KB)     
» Media 3: MOV (723 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited