## Modeling material saturation effects in microholographic recording

Optics Express, Vol. 15, Issue 4, pp. 1732-1737 (2007)

http://dx.doi.org/10.1364/OE.15.001732

Acrobat PDF (293 KB)

### Abstract

Microholographic data storage system model is presented that includes non-linear and non-local behavior of the storage material for accurate simulation of the system and optimization of the writing process. For the description of the photopolymer material a diffusion based nonlocal material model is used. The diffusion equation is solved numerically and the modulation of the dielectric constant is calculated. Diffraction efficiency of simulated microholograms and measurements were compared, and they show good agreement.

© 2007 Optical Society of America

## 1. Introduction

1. H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron **4**,840–848 (1998) [CrossRef]

2. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A **3**,72–81 (2001) [CrossRef]

3. Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007) [CrossRef] [PubMed]

3. Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007) [CrossRef] [PubMed]

9. F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett **21**,896–898 (1996) [CrossRef] [PubMed]

## 2. Description of the model

^{3}, the sampling distance is 50nm in x,y and z directions. In the paper the model is presented in one dimensional form for easier understanding.

6. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A **17**,1108–1114 (2000) [CrossRef]

_{0}) is used to evaluate the integral at t

_{0}with an exposure and polymerization occuring during a short time ∆t. Given that the time-scale of the diffusion is much longer than ∆t, equation 2 can be written in finite difference form as

6. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A **17**,1108–1114 (2000) [CrossRef]

*σ*is the nonlocal response length, typically given by the length of the polymer chain.

10. L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett **24**,487–489 (1999) [CrossRef]

_{max}is the maximal achievable polymer concentration and ∆ε

_{max}is the maximal achievable dielectric constant value. Equation 8 provides the modulation of the dielectric constant, which describes holograms written into the material and can be directly used in our microholographic system model [3

3. Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007) [CrossRef] [PubMed]

12. S.-D. Wu and E. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B **20**,1177–1188 (2003) [CrossRef]

13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization driven diffusion model,” Opt. Express **13**,6990–7004 (2005) [CrossRef] [PubMed]

## 3. Verification of the model on plane wave gratings

## 4. Application to microholographic recording and comparison to measurements

## 5. Summary

## Acknowledgments

## References and links

1. | H.J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, “High-density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron |

2. | S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A |

3. | Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lörincz, “Modeling of multilayer microholographic data storage,” Appl. Opt (to be published, 2007) [CrossRef] [PubMed] |

4. | W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt |

5. | G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt |

6. | J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A |

7. | F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models,” Appl. Opt |

8. | J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B |

9. | F. Mok, G.W. Burr, and D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett |

10. | L. Dhar, A. Hale, H.E. Katz, M.L. Schilling, M.G. Schnoes, and F.G. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett |

11. | G. A. Korn and T. M. Korn, |

12. | S.-D. Wu and E. Glytsis, “Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,” J. Opt. Soc. Am. B |

13. | J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization driven diffusion model,” Opt. Express |

14. | H. J. Coufal, D. Psaltis, and G. T. Sincerbox, |

**OCIS Codes**

(050.7330) Diffraction and gratings : Volume gratings

(090.2900) Holography : Optical storage materials

(210.0210) Optical data storage : Optical data storage

(210.2860) Optical data storage : Holographic and volume memories

**ToC Category:**

Optical Data Storage

**History**

Original Manuscript: November 22, 2006

Revised Manuscript: January 16, 2007

Manuscript Accepted: January 22, 2007

Published: February 19, 2007

**Citation**

Zs. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, "Modeling material saturation effects in microholographic recording," Opt. Express **15**, 1732-1737 (2007)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1732

Sort: Year | Journal | Reset

### References

- H. J. Eichler, P. Kümmel, S. Orlic, and A. Wappelt, "High-density disk storage by multiplexed microholograms," IEEE J. Sel. Tops. Quantum Electron. 4, 840-848 (1998). [CrossRef]
- S. Orlic, S. Ulm, and H. J. Eichler, "3D bit-oriented optical storage in photopolymers," J. Opt. A, Pure Appl. Opt. 3, 72-81 (2001). [CrossRef]
- Zs. Nagy, P. Koppa, E. Dietz, S. Frohmann, S. Orlic, and E. Lőrincz, "Modeling of multilayer microholographic data storage," Appl. Opt.(to be published, 2007). [CrossRef] [PubMed]
- W. S. Colburn and K. A. Haines, "Volume hologram formation in photopolymer materials," Appl. Opt. 10, 1636-1641 (1971). [CrossRef] [PubMed]
- G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
- J. T. Sheridan and J. R. Lawrence, "Nonlocal-response diffusion model of holographic recording in photopolymer," J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
- F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, "Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models," Appl. Opt. 41, 845-852 (2002). [CrossRef] [PubMed]
- J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, "Adjusted intensity nonlocal diffusion model of photopolymer grating formation," J. Opt. Soc. Am. B 19, 621-629 (2002). [CrossRef]
- F. Mok, G.W. Burr, and D. Psaltis, "A system metric for holographic memory systems," Opt. Lett. 21, 896-898 (1996). [CrossRef] [PubMed]
- L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. G. Schilling, "Recording media that exhibit high dynamic range for digital holographic data storage," Opt. Lett. 24, 487-489 (1999). [CrossRef]
- G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, (Dover Publications, 2000), Chapter 10.
- S.-D. Wu and E. Glytsis, "Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis," J. Opt. Soc. Am. B 20, 1177-1188 (2003). [CrossRef]
- J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, "Temporal analysis of grating formation in photopolymer using the nonlocal polymerization driven diffusion model," Opt. Express 13, 6990-7004 (2005). [CrossRef] [PubMed]
- H. J. Coufal, D. Psaltis and G. T. Sincerbox, Holographic data storage, (Springer, 2000), Part II - Photopolymer systems

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.