OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3342–3347
« Show journal navigation

Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices

Douglas H. Werner, Do-Hoon Kwon, Iam-Choon Khoo, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3342-3347 (2007)
http://dx.doi.org/10.1364/OE.15.003342


View Full Text Article

Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared metamaterials that possess a reconfigurable index of refraction from negative through zero to positive values are presented. Reconfigurability is achieved by cladding thin layers of liquid crystal both as a superstrate and a substrate on an established negative-index metamaterial, and adjusting the permittivity of the liquid crystal. Numerical results show that the index of refraction for the proposed structure can be changed over the range from -1 to +1.8 by tuning the liquid crystal permittivity from 2 to 6 at a wavelength of 1.4 μm.

© 2007 Optical Society of America

1. Introduction

A flurry of recent theoretical and experimental activity has confirmed the idea first proposed nearly four decades ago that the refractive index of a medium could be negative as well as positive [1

1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968). [CrossRef]

]. The first demonstration of negative index behavior was at microwave frequencies [2

2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001). [CrossRef] [PubMed]

]. More recently, material systems closer to visible wavelengths that exhibit negative index properties have been reported, which include periodic structures such as photonic crystals [3

3. I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006). [CrossRef]

], nano-patterned noble metal particles [4

4. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30,3356–3358 (2005). [CrossRef]

] or their complements [5

5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005). [CrossRef] [PubMed]

, 6

6. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005). [CrossRef] [PubMed]

], as well as bulk metamaterials containing a random distribution of nano-particulates [7

7. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002). [CrossRef]

, 8

8. I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006). [CrossRef] [PubMed]

]. All of these designs targeted a fixed wavelength for achieving negative index behavior with the exception of [8

8. I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006). [CrossRef] [PubMed]

], where reconfigurability of the metamaterial properties was realized using liquid crystal as the host medium containing randomly dispersed coated dielectric spheres as guests.

In this paper, we introduce a new and novel reconfigurable metamaterial that incorporates a superstrate and a substrate of nematic liquid crystal onto a conventional negative-index meta-material (NIM) which utilizes a combination of magnetic resonators and metal films [9

9. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006). [CrossRef] [PubMed]

]. We demonstrate that the effective refractive index of the structure can be tuned from negative — through zero — to positive values, as the dielectric constant of the liquid crystal is varied. We also demonstrate that the bandwidth over which the metamaterial exhibits a negative index behavior can be changed (i.e., increased or decreased) by properly tuning the liquid crystal layers.

2. Liquid crystal properties and analysis methodology

In an aligned nematic liquid crystal, linearly polarized light incident as an extraordinary wave will see a permittivity εLC given by [10

10. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, NY, 1995).

]

εLC=εεεcos2θ+εsin2θ,
(1)

where ε and ε are the respective permittivities for light polarized parallel and perpendicular to the director axis n̂. It is important to note that εLC is independent of frequency and only depends on the director axis orientation angle θ with respect to the optical wave vector k i. To date, nematic liquid crystal with very large dielectric anisotropy (or birefringence) has been synthesized (ε ≈ 4, ε ≈ 2, and the resulting tuning range for the refractive index Δn ≈ 0.6) over the visible-infrared spectrum. In this spectral region, micron-thick nematic liquid crystal layers are nearly lossless. Studies over the last two decades have also conclusively demonstrated their unusually large electro- and all-optical (i.e., nonlinear-optical) response associated with the field induced director axis reorientation. These unique optical properties, in addition to their compatibility with almost all technologically important optoelectronic materials and their fluid nature, make them prime candidates for incorporation into nanostructured (electrically or all-optically) tunable materials/devices.

The optical properties of the metamaterials in this study are analyzed using a rigorous full-wave electromagnetic scattering analysis technique known as the finite-element boundary-integral method [11

11. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998). [CrossRef]

]. Electric field values in a single unit cell of an infinitely periodic structure are determined by imposing periodic boundary conditions in the computational domain. Once the complex reflection and transmission coefficients are determined from the numerical analysis, the effective index of refraction n = n′ + in″ of a homogenized layer can be unambiguously determined from well-established inversion procedures [12

12. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002). [CrossRef]

, 13

13. A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23,423–433 (2006). [CrossRef]

]. In the following numerical analysis, the liquid crystal is treated approximately as a homogeneous isotropic dielectric layer with a relative permittivity of εLC.

Fig. 1. A two-dimensional metamaterial with thick liquid crystal superstrate and substrate layers having a reconfigurable index of refraction.

3. Reconfigurable near-IR metamaterial

Figure 1 shows a single unit cell of a two-dimensional periodic metamaterial structure with reconfigurable negative-zero-positive index of refraction. The structure is infinite in the ±ŷ directions and periodic with period p in the ±x̂ directions. This is a slightly modified version of a near-infrared (near-IR) metamaterial geometry previously reported in [9

9. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006). [CrossRef] [PubMed]

]. A magnetic resonator comprises two strips of silver of width w and thickness t separated by a thin layer of alumina of thickness d. The negative permittivity needed for negative-index behavior is provided by thin silver films of thickness tf bounding the periodic array of magnetic resonators from the ±ẑ directions. Finally, the space between neighboring magnetic resonators is filled with silica.

Unlike in [9

9. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006). [CrossRef] [PubMed]

] where thin protective layers of silica were placed over silver films, here a layer of liquid crystal with thickness tLC is used both as the superstrate and the substrate. Finally, the entire metamaterial is sandwiched between thick glass substrate and superstrate layers which, for modeling purposes, are treated as two half-spaces. A monochromatic light wave with the electric field polarized in the x̂ direction is assumed to illuminate the structure at normal incidence propagating in the +ẑ direction.

The magnetic resonators can cause the effective permeability μ = μ′ + ″ to deviate from unity and possibly reach negative values. In contrast, control over the effective permittivity is achieved mainly through an averaging effect, i.e., by averaging over the permittivities of constituent components of the metamaterial. Varying εLC will have a primary influence on the effective permittivity ε =ε′ + ″ of the metamaterial. Hence, it follows that positive, zero, or negative values of ε′ properly combined with magnetic resonances can produce any desired positive, zero, or negative value of n′.

Figure 2 shows plots of the three effective parameters n, ε, and μ for a near-IR version of the metamaterial depicted in Fig. 1. The geometrical parameters of the base NIM design are the same as those used in [9

9. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006). [CrossRef] [PubMed]

], i.e., p = 600 nm, w = 300 nm, t = 30 nm, d = 40 nm, and tf = 20 nm. The thickness of the liquid crystal layers is assumed to be tLC = 200 nm. The silica, alumina, and glass are assumed to have refractive indices equal to 1.445, 1.62, and 1.50, respectively. For the silver, a dielectric function based on published experimental results [14

14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972). [CrossRef]

] was employed.

Fig. 2. Effective parameters of the reconfigurable near-IR metamaterial for different values of εLC: (a) n′, (b) n″, (c) ε, and (d) μ with respect to wavelength.

Figure 2(a) shows n′ plotted for five different values of εLC in the range 2 ≤ εLC ≤ 3. With εLC = 2, the metamaterial exhibits a negative index band between 1.37 μm and 1.47 μm. As εLC is increased, it is seen that the negative index band decreases from shorter wavelengths toward the longer wavelength side, which remains fixed as long as the negative index band is present. Therefore, as εLC is increased, the negative index band diminishes from the shorter wavelength side until it completely vanishes. No negative index characteristic is observed for values of εLC ≥ 2.7. Taking εLC = 2 as the minimum practical value for the permittivity of a liquid crystal, the proposed near-IR metamaterial possesses a reconfigurable index of refraction over a negative-zero-positive range from λ = 1.37 μm to λ = 1.47 μm, which represents a 7.1% fractional bandwidth.

The dependence of the effective permittivity on the parameter εLC is shown in Fig. 2(c). The averaging effect on the bulk metamaterial permittivity is evident by observing that ε′ monotonically increases as the value of εLC is increased. Moreover, the fact that the dielectric function of silver is a decreasing function of λ explains why the negative index band diminishes with increasing values of εLC. To this end, as εLC is increased, the starting wavelength for which ε′ < 0 moves toward longer wavelengths, causing the negative index band to decrease. For all cases exhibiting a negative index band (i.e., for εLC ≤ 2.6), magnetic resonances are observed in Fig. 2(d) to exist within the 1.39 μm to 1.46 μm range with varying strengths and bandwidths.

Comparing n′ and n′′ in Figs. 2(a) and 2(b), respectively, for different values of εLC over the region where n′ < 0, one can observe a trade-off relationship between bandwidth and loss. As the negative index bandwidth becomes narrower with increasing εLC, n″ monotonically decreases over the same bandwidth. This consistent relationship between n′ and n″ vanishes as soon as the negative index band disappears with εLC = 3. The trade-off between bandwidth and loss of the NIM can also be understood in terms of the Kramers-Kronig relations [15

15. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).

].

Fig. 3. The effective index of refraction n with respect to εLC at two different wavelengths λ = 1.4 and 1.45 μm.

A different perspective is offered by Fig. 3, where the variations of n are shown plotted with respect to εLC for the metamaterial to demonstrate its ability to be reconfigured between a NIM, a zero-index metamaterial (ZIM), and a positive-index metamaterial (PIM) at a fixed wavelength. At this point two wavelengths (λ = 1.40 μm and 1.45 μm) within the negative index band corresponding to εLC = 2 are chosen for further consideration. The value of n′ is seen to increase from -1 to +1.8 or +1.2 when εLC is varied from 2 to 6, respectively, demonstrating reconfigurability for NIM-ZIM-PIM behavior. It is noted that n′ does not vary linearly with εLC. Instead, n′ increases abruptly from - 1 to about +0.2 over a relatively narrow range of εLC values for both of the targeted wavelengths. The rate of change of n′ over this interval is higher for the longer wavelengths. Within the range of εLC values considered and for both wavelengths, it is observed that n″ has a sharp dip and reaches the minimum value where n′ increases rapidly from negative values towards zero.

4. Scaling to mid-infrared wavelengths

Figure 4 shows the characteristics of a mid-IR reconfigurable metamaterial in the 4 to 6 μm range. The geometrical parameters used for this design example are given by p = 2.4 μm, w = 1.2 μm, t = 120 nm, d = 160 nm, and tf = 20 nm. A liquid crystal superstrate and substrate are incorporated into the design, each having a thickness of tLC = 600 nm. Finally, a Lorentz-Drude model [16

16. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37,5271–5283 (1998). [CrossRef]

] was used to represent the bulk silver properties in the mid-IR range.

Several performance aspects can be compared with those of the near-IR design. For the lowest value of εLC (i.e., εLC = 2), it is seen from Fig. 4(a) that the bandwidth over which a negative index of refraction exists is 4.32 μm ≤ λ ≤ 5.08 μm. This range of wavelengths also corresponds to where the index of refraction is reconfigurable between negative, zero, and positive values. The corresponding fractional bandwidth for negative index behavior is equal to 16.2%, which is much wider than in the near-IR design. However, this bandwidth enhancement is accompanied by a higher loss. Figure 4(a) shows that over the bandwidth of negative n′, the value of n″ ranges from 1.51 to 4.60 when εLC = 2, whereas n″ ranges from 0.51 to 2.74 (see Fig. 2(b)) even though the two designs have the same silver film thickness of tf = 20 nm This phenomenon is due to the higher loss present in silver at longer wavelengths. As εLC is increased, the negative index bandwidth exhibits the same trend of diminishing from the lower wavelength side toward longer wavelengths.

Fig. 4. The effective index of refraction n for a mid-infrared reconfigurable metamaterial design: (a) n with respect to wavelength for different values of εLC, (b) n with respect to εLC at two different wavelengths λ = 4.5 and 4.8 μm.

In Fig. 4(b), variations of n at two wavelengths, λ = 4.5 μm and 4.8 μm, are shown plotted with respect to εLC. The value of n′ for both wavelengths changes from - 1 to +1.7 over the tuning range 2 ≤ εLC ≤ 6. Similar to the near-IR design shown in Fig. 3, n′ for the mid-IR design changes abruptly over a relatively narrow range of εLC, with the rate of change greater at the longer wavelength λ = 4.8 μm. Furthermore, minimum loss is observed again over the same narrow bandwidth corresponding to the largest change in n′.

5. Conclusion

Near-IR metamaterials incorporating tunable liquid crystal layers as superstrates and substrates have been presented. Having the ability to vary the permittivity of the liquid crystal layers provides a means for controlling the overall effective permittivity of the metamaterial in an averaging fashion. Coupled with properly designed periodic magnetic resonators, the effective refractive index of the metamaterial structure can be readily reconfigured or tuned between negative, zero, and positive values at a given wavelength. Moreover, the bandwidth over which the metamaterial exhibits a negative index behavior can be controlled (i.e., increased or decreased) via the liquid crystal tuning. A 0.54 μm-thick near-IR metamaterial design was presented which exhibits tunability of n′ from -1 to +1.8 around λ = 1.4 μm by varying εLC from 2 to 6. It was also observed that the negative index band diminishes from the short wavelength side upward as εLC is increased, until eventually it completely disappears. The near-IR design has been extended to a mid-IR design that provides reconfigurability of the negative index behavior over a wider bandwidth at the expense of higher losses.

Acknowledgments

This work was supported in part by the Penn State Materials Research Institute and the Penn State MRSEC under NSF grant DMR 0213623, and also in part by ARO grant W911NF-04-1-0350, NSF-PREM grant DMR-0611430, and by ARO-MURI award 50342-PH-MUR.

References and links

1.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10,509–514 (1968). [CrossRef]

2.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292,77–79 (2001). [CrossRef] [PubMed]

3.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. 453,309–319 (2006). [CrossRef]

4.

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30,3356–3358 (2005). [CrossRef]

5.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95,137404 (2005). [CrossRef] [PubMed]

6.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13,4922–4930 (2005). [CrossRef] [PubMed]

7.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11,65–74 (2002). [CrossRef]

8.

I. C. Khoo, D. H. Werner, X. Liang, and A. Diaz, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31,2592–2594 (2006). [CrossRef] [PubMed]

9.

U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14,7872–7877 (2006). [CrossRef] [PubMed]

10.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, NY, 1995).

11.

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, Piscataway, NJ, 1998). [CrossRef]

12.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65,195104 (2002). [CrossRef]

13.

A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, “Negative refractive index in optics of metal-dielectric composites,” J. Opt. Soc. Am. B 23,423–433 (2006). [CrossRef]

14.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,4370–4379 (1972). [CrossRef]

15.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, UK, 1960).

16.

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37,5271–5283 (1998). [CrossRef]

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties

ToC Category:
Metamaterials

History
Original Manuscript: January 9, 2007
Manuscript Accepted: February 26, 2007
Published: March 19, 2007

Citation
Douglas H. Werner, Do-Hoon Kwon, Iam-Choon Khoo, Alexander V. Kildishev, and Vladimir M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980). [CrossRef]
  2. M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988). [CrossRef] [PubMed]
  3. K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989). [CrossRef]
  4. D. K.�Serkland and P.�Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett.�24, 92-94 (1999). [CrossRef]
  5. S.�Coen and M.�Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett.�26, 39-41 (2001). [CrossRef] [PubMed]
  6. M. E.�Marhic, K. K. Y.�Wong, L. G.�Kazovsky, and T. E.�Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett.�27, 1439-1441 (2002). [CrossRef] [PubMed]
  7. S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003). [CrossRef]
  8. J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002) [CrossRef] [PubMed]
  9. J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003). [CrossRef] [PubMed]
  10. C. J. S.�de Matos, J. R.�Taylor, and K. P.�Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett.�29, 983-985 (2004).
  11. Y.�Deng, Q.�Lin, F.�Lu, G. P.�Agrawal, and W. H.�Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett.�30, 1234-1236 (2005). [CrossRef]
  12. J. S. Y.�Chen, S. G.�Murdoch, R.�Leonhardt, and J. D.�Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express�14, 9491-9501 (2006). [CrossRef]
  13. C.�Lin, W. A.�Reed, A. D.�Pearson, and H. T.�Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett.�6, 493-495 (1981). [CrossRef]
  14. S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003). [CrossRef]
  15. M. E.�Marhic, K. K. Y.�Wong, and L. G.�Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron.�10, 1133-1141 (2004).
  16. J. D.�Harvey, R.�Leonhardt, S.�Coen, G. K. L.�Wong, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett.�28, 2225-2227 (2003). [CrossRef]
  17. A. Y. H.�Chen, G. K. L.�Wong, S. G.�Murdoch, R.�Leonhardt, J. D.�Harvey, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett.�30, 762-764 (2005).
  18. G.�Cappellini and S.�Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B�8, 824-838 (1991).
  19. M. E.�Marhic, K. K. Y.�Wong, M. C.�Ho, and L. G.�Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett.�26, 620-622 (2001).
  20. J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited