OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijin de Sterke
  • Vol. 15, Iss. 9 — Apr. 30, 2007
  • pp: 5893–5897
« Show journal navigation

A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection

Lin Chen, Xiaoyan Lei, Shuangchun Wen, and Jianguo Yu  »View Author Affiliations


Optics Express, Vol. 15, Issue 9, pp. 5893-5897 (2007)
http://dx.doi.org/10.1364/OE.15.005893


View Full Text Article

Acrobat PDF (168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed and experimentally demonstrated a novel radio-over-fiber architecture using an electrical mixer and an optical intensity modulator based on double side-band modulation scheme to generate dense wavelength-division multiplexing (DWDM) optical millimeter for carrying downstream data and centralized lightwave for carrying upstream data. Since the remaining optical carriers with high power have been reused, the optical power is effectively utilized; therefore the system cost can be reduced.

© 2007 Optical Society of America

1. Introduction

2. Principle

Fig. 1. Principle of the DWDM optical mm-wave generation and wavelength reuse. IL: interleaver, OC: optical coupler, TOF: tunable optical filter.

3. Experimental setup and results

Fig. 2. Experimental setup for DWDM optical mm-wave generation and wavelength reuse for upstream data connection by using DSB modulation. TOF: tunable optical filter. Resolution for all optical spectra is 0.01nm. Inset (i) the optical spectrum of DWDM optical mm-wave generated by DSB modulation. (ii) The optical spectrum of DWDM optical mm-wave after transmission over 20km SMF-28. (iii) The optical spectrum of DWDM mm-wave after the interleaver. (iv) The optical spectrum of the desired channel optical mm-wave filtered by TOF1. (v) The optical spectrum of remaining optical carrier separated by interleaver. (vi) The spectrum of desired channel optical carrier filtered by TOF2. (vii) The spectrum of desired channel uplink optical carrier modulated with the uplink data.

Fig.3. Eye diagrams at different locations. (a) Eye diagram of the optical mm-wave of DWDM channel by DSB modulation before SMF-28; (b) Eye diagram of the optical mm-wave of DWDM channel after transmission over 20km fiber. (c) Eye diagram of uplink optical signal for desired channel with 2.5 Gb/s data after the EDFA and before transmission over fiber. (d) Eye diagram of uplink signal for desired channel after 20 km SMF-28.

Fig. 4. BER curves for both downlink and uplink data.

4. Conclusion

Acknowledgments

Authors would like to thank Dr. J. Yu for his useful discussion and encouragement, and his assistance in part of the experiments. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 10576012 and 60538010), the program of the Ministry of Education of China for New Century Excellent Talents in University, the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20040532005), and the Hunan Provincial Natural Science Foundation of China (Grant No. 06JJ50108).

References and links

1.

A. Kaszubowska, L. Hu, and L. P. Barry, “Remote downconversion with wavelength reuse for the radio/fiber uplink connection,” IEEE Photon. Technol. Lett. 18, 562–564 (2006). [CrossRef]

2.

A. Wiberg, P. P. Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedkvist, “Fiber-optic 40GHz mm-wave link with 2.5Gb/s data transmission,” IEEE Photon. Technol. Lett. 17, 1938–1940 (2005). [CrossRef]

3.

M. Attygalle, C. Lim, and A. Nirmalathas, “Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation,” J. Lightw. Technol. 24, 1703–1709 (2006). [CrossRef]

4.

J. J. O’ Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidth millimeter wave signals,” Electron. Lett. 28, 2309–2311 (1992).

5.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators,” IEEE Photon. Technol. Lett. 18, 265–267 (2006). [CrossRef]

6.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, “DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver,” IEEE Photon. Technol. Lett. 18, 1418–1420 (2006). [CrossRef]

7.

A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, “Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station,” IEEE Trans. Microwave Theory Tech. Part 2 , 49, 2006–2009 (2001). [CrossRef]

8.

J. Yu, J. Gu, Z. Jia, and G. K. Chang, “Seamless integration of an 8× 2.5Gb/s WDM-PON and Radio-Over-Fiber using all-optical up-conversion based on Raman-assisted FWM,” IEEE Photon. Technol. Lett. 17, 1986–1988 (2005). [CrossRef]

9.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcome chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microwave Theory Tech. 45, 1410– 1415 (1997). [CrossRef]

10.

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, “Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator,” J. Lightw. Technol. 23, 2687–2695(2005). [CrossRef]

11.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett. 18, 2056–2058 (2006). [CrossRef]

12.

Z. Jia, J. Yu, and G. K. Chang, “A full-duplex radio-over-fiber system based on optical carrier suppression and reuse,” IEEE Photon. Technol. Lett. 18, 1726 –1728 (2006). [CrossRef]

13.

J. Yu, Z. Jia, T. Wang, and G. K. Chang, “A Novel Radio-Over-Fiber Configuration Using Optical Phase Modulator to Generate an Optical mm-Wave and Centralized Lightwave for Uplink Connection,” IEEE Photon. Technol. Lett. 19, 140–142 (2007). [CrossRef]

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(060.4230) Fiber optics and optical communications : Multiplexing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 2, 2007
Revised Manuscript: February 25, 2007
Manuscript Accepted: March 25, 2007
Published: April 27, 2007

Citation
Lin Chen, Xiaoyan Lei, Shuangchun Wen, and Jianguo Yu, "A novel radio over fiber system with DWDM mm-wave generation and wavelength reuse for upstream data connection," Opt. Express 15, 5893-5897 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-9-5893


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kaszubowska, L. Hu, and L. P. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006). [CrossRef]
  2. A. Wiberg, P. P. Millan, M. V. Andres, P. A. Andrekson, and P. O. Hedkvist, "Fiber-optic 40GHz mm-wave link with 2.5Gb/s data transmission," IEEE Photon. Technol. Lett. 17, 1938-1940 (2005). [CrossRef]
  3. M. Attygalle, C. Lim, and A. Nirmalathas, "Extending optical transmission distance in fiber wireless links using passive filtering in conjunction with optimized modulation," J. Lightw. Technol. 24, 1703- 1709 (2006). [CrossRef]
  4. J. J. O’ Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals," Electron. Lett. 28, 2309- 2311 (1992).
  5. J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, "Optical Millimeter-Wave Generation or Up-Conversion Using External Modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006). [CrossRef]
  6. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. K. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006). [CrossRef]
  7. A. Nirmalathas, D. Novak, C. Lim, and R. B. Waterhouse, "Wavelength reuse in the WDM optical interface of a millimeter-wave fiber-wireless antenna base station," IEEE Trans. Microwave Theory Tech. Part 2, 49, 2006-2009 (2001). [CrossRef]
  8. J. Yu, J. Gu, Z. Jia, and G. K. Chang, "Seamless integration of an 8× 2.5Gb/s WDM-PON and Radio-Over-Fiber using all-optical up-conversion based on Raman-assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005). [CrossRef]
  9. G. H. Smith, D. Novak, and Z. Ahmed, "Overcome chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410- 1415 (1997). [CrossRef]
  10. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," J. Lightw. Technol. 23, 2687- 2695 (2005). [CrossRef]
  11. L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006). [CrossRef]
  12. Z. Jia, J. Yu, and G. K. Chang, "A full-duplex radio-over-fiber system based on optical carrier suppression and reuse," IEEE Photon. Technol. Lett. 18, 1726 -1728 (2006). [CrossRef]
  13. J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A Novel Radio-Over-Fiber Configuration Using Optical Phase Modulator to Generate an Optical mm-Wave and Centralized Lightwave for Uplink Connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig.3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited