OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 10 — May. 12, 2008
  • pp: 7175–7180
« Show journal navigation

Compact multimode interference couplers with arbitrary power splitting ratio

David J. Y. Feng and T. S. Lay  »View Author Affiliations


Optics Express, Vol. 16, Issue 10, pp. 7175-7180 (2008)
http://dx.doi.org/10.1364/OE.16.007175


View Full Text Article

Acrobat PDF (430 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that it is possible to obtain 2×2 waveguide couplers with arbitrary power splitting ratios by interconnecting a pair of unequal-width waveguides as the phase-tuning section into the middle of two short MMI sections. These couplers have simple geometry and low loss. They offer valuable new possibilities for designing waveguide-based photonic integrated circuits.

© 2008 Optical Society of America

1. Introduction

2. Design of 2×2 couplers with arbitrary power splitting ratio

The idea to achieve a coupler with freely chosen power splitting ratio is based on two short MMI sections interconnected by a phase-shifter in the middle as illustrated in the schematic diagram of Fig. 1(a). Different to a phase-shifter formed by a pair of unequal-length waveguides as usually used in MZI, this phase-shifter is of the same length LPS but of unequal waveguide widths (wa and wb). Waveguides “a” and “b” are located at the same (bar)- and opposite (cross)-side to the input waveguide, respectively. The MMI sections to be discussed in this paper are all 2×2 waveguide couplers. For the MMI sections, we set the input/output waveguide pairs of all the devices to have the same center-to-center separation s. This distance s will serve as the common unit of length scaling for the MMI sections. In order to minimize the size of the couplers, s is generally chosen to be as short as the lithographic process would permit. The beat length (Lπ) between the two lowest guided modes of the same polarization in the MMI waveguide is given according to the standard mode propagation analysis (MPA) by [1

1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]

, 7

7. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34, 6898–6910 (1995). [CrossRef] [PubMed]

]

Lπ=4nsWe23λ0=4nsr2s23λ0Ar2s2,
(1)

where ns is the effective refractive index of the slab waveguide from which the MMI waveguide of effective width We is formed, λ0 is the vacuum wavelength, and rWe/s. Equation (1) holds for both TE and TM polarizations [1

1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]

]. In addition to analyses by MPA, we also carry out numerical simulations by beam propagation method (BPM) to obtain more realistic assessments. In this studies, the epitaxial slab waveguide on n+-InP substrate is assumed to have a 1.79 µm-thick InAlAs upper p-type cladding, a 0.14 µm-thick core layer containing triple quantum wells with the absorption edge at wavelength =1.48 µm, and a 0.14 µm-thick InAlAs lower n-type cladding. The basic layer structure in the waveguide ridge is shown schematically in Fig. 1(b). The side walls of the MMI section are assumed to be etched down to the InP substrate to keep the number of confined modes large, to reduce phase error of the confined modes, and to suppress polarization sensitivity. The ns of the TE fundamental slab mode is 3.2147 at λ0=1.55 µm (the base wavelength in this study). In order to match the low-order modes in 2-D simulation to those in 3-D simulation, the equivalent effective refractive index of the lateral cladding is set to 2.3. Considering the resolution and limitation of our photolithographic process, the width of the access waveguides w is assumed to be 2.2 µm for only existing fundamental mode inside the input/output access waveguides and their separation is set to be s=5 µm. The following four relatively short MMI sections with K≥0.5 have been considered as the building blocks.

Fig. 1. Schematic diagrams of a 2×2 coupler based on two short MMI sections interconnected by a pair of phase-shifter waveguides in their middle: (a) In-plan view of the 2×2 coupler; and (b) Cross-section view of the basic layer structure in the waveguide ridge.

For MMI-A (K=0.5, r=1.44), we have We=s+w=1.44s=7.2 µm. For the given values of s and w, this is the minimum practical effective width for a low loss MMI [1

1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]

]. The device length LA is (3/2)LπA=3.1104As 2=215 µm according to MPA. For MMI-B (K=0.5, r=3), we have We=3s=15 µm and LB=(1/2)LπB=4.5As 2=311 µm. The access waveguides for MMI-B are located exactly at ±We/6 from the centerline of the multimode waveguide. For MMI-C (K=0.85, r=2), we have We=2s=10 µm and LC=(3/4)LπC=3As 2=207 µm. The access waveguides are located exactly at ±We/4 from the centerline of the MMI-C waveguide. For MMI-D (K=0.72, r=2.5), we have We=2.5s=12.5 µm, LD=(3/5)LπD=3.75As 2=259 µm. The geometric centers of the access-waveguide pairs at two ends are offset in opposite directions by ±0.25s from the center of the MMI-D waveguide.

The cross- and bar-transfer functions of these four basic MMIs are deduced from Bachmann et al. [7

7. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34, 6898–6910 (1995). [CrossRef] [PubMed]

] and summarized in Table I. In this table, βU is the phase constant for the fundamental mode in the MMI section U, and LU is the length of that MMI section. The ± signs in the subscripts are significant only for MMI-D in which the access waveguides are not symmetrically placed. The asymmetry leads to two cross optical paths of unequal lengths. According to the 3-D BPM simulations [15

15. BeamPROP, version 5.1, RSoft Inc., NY (2005).

], the total insertion losses of these four basic MMIs are in the range of 4 to 5%. Since all four basic MMI sections are 2×2 couplers with the same s value, they can be simply aligned and cascaded. Using 3-D EigenMode Expansion (EME) method [16

16. FimmProp, version 4.3, Photon Design, Oxford, UK (2004).

] to check the mode coupling efficiency for those interconnecting junctions as indicated in Fig. 1(a) by circular dot-line, the results show that only about 1% mode-mismatch loss is presented when one phase-shifter waveguide width, either “a” or “b”, is extended/reduced to 2.4/2.0 µm from 2.2 µm. Thus the phase-shifter waveguides can be considered as lossless, and their transfer functions are expressed as

Ha(b)=exp(jβa(b)LPS)forwaveguideaandb
(2)

where βa and βb are the propagation constant of fundamental mode for waveguide “a” and “b”, respectively; and LPS is the length of phase-shifting section. The transfer matrix of this cascaded device can be obtained by the following matrix multiplication.

[HBU(PS)VHX±U(PS)VHXU(PS)VHB±U(PS)V]=[HBUHX±UHXUHBU][Hb00Ha][HBVHX±VHXVHBV]
(3)

where HX U(PS)V ± and HB U(PS)V ± are respectively the transfer functions to the cross output port and the bar output port for the cascaded device. The K-value is given by

KU(PS)V=HX±U(PS)V2HX±U(PS)V2+HB±U(PS)V2
(4)

Table I. Transfer functions of MMI-A, MMI-B, MMI-C, and MMI-D

table-icon
View This Table

When LPS=0, the MMI sections are actually butt-jointed without any interconnecting waveguides. We have examined the results of all possible combinations using Eq. (3) and verified their consistency with the results of 3-D BPM simulations. The resultant K-values are: KAB=0, KAC=0.15 (0.146), KAD=0.07 (0.075), KBC=0.85 (0.854), KBD=0.93 (0.925), KCD=0.64 (0.643), and KDD=0.80 (0.80). The alternative values given between parentheses are the MPA values. Among these, 0.07, 0.93, 0.64, and 0.80 are new K values that are so far not known to be possible obtained by using a constant-width MMI [7

7. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34, 6898–6910 (1995). [CrossRef] [PubMed]

, 8

8. J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19, 700–707 (2001). [CrossRef]

]. Their detailed design concept, geometry and simulated 2-D field map combining with wavelength sensitivity have been reported in [14

14. D. J. Y. Feng, T. S. Lay, and T. Y. Chang, “Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections,” Opt. Express 15, 1588–1593 (2007). [CrossRef] [PubMed]

]. Using this concept, another shortened coupler of K=0.28 was also obtained by a half of MMI-D (MMI-hD) cascading another MMI of We=1.94s (MMI-E); it had been presented with a detailed discussion in [17

17. D. J. Y. Feng, T. S. Lay, and T. Y. Chang, “Compact 2×2 Couplers for Unequal Splitting of Power Obtained by Cascading of Short MMI Sections,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA25, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-JThA25

]. In order to show the benefit from our cascaded MMIs in comparison with conventional constant-width ones, a summarized map is shown in Fig. 2 to illustrate their necessary device length for each obtainable K-value by the unit length of As2 according to MPA.

When LPS≠0 and the waveguide width in the phase-tuning section is the same as those of input/output access waveguides, i.e. δab=0, seven 2×2 cascaded MMI devices to be applied as the starting-point to achieve power splitter with freely chosen K-values are shown by simulated 2-D field maps in Fig. 3. According to 3-D BPM simulation, the resultant Kvalues of these seven cases are still the same as those of butt-jointed cascaded ones. The total insertion loss is 4% (0.17 dB) for A+A, 8% (0.36 dB) for A+B, A+C, and A+D, and 12% (0.55 dB) for B+D, C+D, and D+D.

Fig. 2. K vs. length for all possible shortest 2×2 MMI couplers made up by simple rectangular geometry. Number by Italic: the device length in unit of As2. (A+D): MMI-A+MMI-D, (2A): MMI-A+MMI-A, hD: half of MMI-D.

For asymmetric cases (LPS≠0 and δa≠δb), continuous variations of LPS following with a series of consequent phase differences can induce a predictable change in K-values. In order to realize the shortest power splitter for each given K-value, we firstly analyze the MMI devices by using Eq. (3) and summarize the calculated results in Fig. 4 by solid-line to give a whole view about K-values vs. the total length of devices. Fig. 4(a) is for the cases of δa=0.1/0.2 µm and δb=0, while Fig. 4(b) is for the cases of δa=0 and δb=0.1/0.2 µm. The horizontal dash lines help us to catch the needed device length for each starting point simultaneously corresponding to those summarized in Fig. 2. Moreover, the 2-D EME simulation results, marked by open circles (δa,b=0.1 µm) and triangles (δa,b=0.2 µm), are also consistent with those calculation results from MPA and matrix multiplication of Eq. (3).

Fig. 3. The simulated 2-D field maps for seven different cascaded MMI couplers with (a) K=1 (A+A), (b) K=0 (A+B), (c) K=0.15 (A+C), (d) K=0.07 (A+D), (e) K=0.93 (B+D), (f) K=0.64 (C+D), and (g) K=0.80 (D+D). (0.96 Total): 96% transmittance in total. The values for total transmittance and K are obtained by 3-D BPM.

In fact, each case can be a full-range power splitter with a sinusoidal change in K-value when the LPS is linearly extended to a π-phase shifting at LPS=621 and 328 µm for δa(b)b(a)=0.1/0 and 0.2/0 µm, respectively. For clarity, each coupler shown Fig. 4 is in range of its best application region. In the case of βa>βb as demonstrated in Fig. 4(a), the K-value for the A+D configuration starts decreasing and then increasing as the total length increases. On the other hand, a reverse trend for the K-value is observed in the B+D and C+D configurations. However, in case of βa<βb as demonstrated in Fig. 4(b), all K-values can be fine adjusted in either up or down without any saturated point before reaching a π-phase shifting. This result is caused by the asymmetric cross-state transfer function of MMI-D as indicated in Table I. In brief, the case of βa<βb offers us a chance to obtain relative shorter MMI-based couplers with K-values in those three special continuously tunable range of K=0.07-0.15 (A+D), 0.93-0.8 (B+D), and 0.64-0.5 (C+D).

Fig. 4. The MPA analyzed and 2-D EME simulated results for K vs. total length (LU+LPS+LV) for the 2×2 couplers with phase shifter of (a) βa>βb (Δ : δab=0.2/0 µm; o : δab=0.1/0 µm), and (b) βa<βb (Δ : δab=0/0.2 µm; o : δab=0/0.1 µm).

4. Conclusions

By introducing a pair of unequal-widths waveguides as a phase shifter into the middle of cascaded MMI sections, 2×2 waveguide couplers with arbitrary power splitting ratio are demonstrated. These compact MMI-based devices use only rectangular geometry without any bent, curved, and tapered waveguides. They offer valuable possibilities for designing waveguide-based photonic integrated circuits.

Acknowledgement

This work was supported by the Ministry of Education, Taiwan under the Aim for the Top University Plan.

References and links

1.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]

2.

D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE J. Sel. Topics Quantum Electron. 8, 1405–1411 (2002). [CrossRef]

3.

S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol. 13, 1766–1770 (1995). [CrossRef]

4.

S. Matsuo, Y. Yoshikuni, T. Segawa, Y. Ohiso, and H. Okamoto, “A widely tunable optical filter using ladder-type structure,” IEEE Photonics Technol. Lett. 15, 1114–1116 (2003). [CrossRef]

5.

V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photonics Technol. Lett. 15, 254–256 (2003). [CrossRef]

6.

P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 Multimode Interference Couplers with Free Selection of Power Splitting Ratios,” J. Lightwave Technol. 14, 2286–2293 (1996). [CrossRef]

7.

M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34, 6898–6910 (1995). [CrossRef] [PubMed]

8.

J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol. 19, 700–707 (2001). [CrossRef]

9.

N. S. Lagali, M. R. Paiam, and R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photonics Technol. Lett. 11, 665–667 (1999). [CrossRef]

10.

H. Ohe, H. Shimizu, and Y. Nakano, “InGaAlAs multiple-quantum-well optical phase modulators based on carrier depletion,” IEEE Photonics Technol. Lett. 19, 1816–1818 (2007). [CrossRef]

11.

Q. Lai, M. Bachmann, W. Hunziker, P. A. Besse, and H. Melchior, “Arbitrary ratio power splitters using angled silica on silicon multimode interference couplers,” Electron. Lett. 32, 1576–1577 (1996). [CrossRef]

12.

T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica-based 2×2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett. , 35, 2031–2033 (1999). [CrossRef]

13.

S. Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms,” Opt. Express , 15, 9015–9021 (2007). [CrossRef] [PubMed]

14.

D. J. Y. Feng, T. S. Lay, and T. Y. Chang, “Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections,” Opt. Express 15, 1588–1593 (2007). [CrossRef] [PubMed]

15.

BeamPROP, version 5.1, RSoft Inc., NY (2005).

16.

FimmProp, version 4.3, Photon Design, Oxford, UK (2004).

17.

D. J. Y. Feng, T. S. Lay, and T. Y. Chang, “Compact 2×2 Couplers for Unequal Splitting of Power Obtained by Cascading of Short MMI Sections,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA25, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-JThA25

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 6, 2008
Revised Manuscript: May 1, 2008
Manuscript Accepted: May 1, 2008
Published: May 2, 2008

Citation
David J. Y. Feng and T. S. Lay, "Compact multimode interference couplers with arbitrary power splitting ratio," Opt. Express 16, 7175-7180 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7175


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  2. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, "Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP," IEEE J. Sel. Top. Quantum Electron. 8, 1405-1411 (2002). [CrossRef]
  3. S. Suzuki, K. Oda, and Y. Hibino, "Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz," J. Lightwave Technol. 13, 1766-1770 (1995). [CrossRef]
  4. S. Matsuo, Y. Yoshikuni, T. Segawa, Y. Ohiso, and H. Okamoto, "A widely tunable optical filter using ladder-type structure," IEEE Photonics Technol. Lett. 15, 1114-1116 (2003). [CrossRef]
  5. V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, "All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer," IEEE Photon. Technol. Lett. 15, 254-256 (2003). [CrossRef]
  6. P. A. Besse, E. Gini, M. Bachmann and H. Melchior, "New 2x2 and 1x3 Multimode Interference Couplers with Free Selection of Power Splitting Ratios," J. Lightwave Technol. 14, 2286-2293 (1996). [CrossRef]
  7. M. Bachmann, P. A. Besse, and H. Melchior, "Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting," Appl. Opt. 34, 6898-6910 (1995). [CrossRef] [PubMed]
  8. J. Leuthold and C. H. Joyner, "Multimode interference couplers with tunable power splitting ratios," J. Lightwave Technol. 19, 700-707 (2001). [CrossRef]
  9. N. S. Lagali, M. R. Paiam, and R. I. MacDonald, "Theory of variable-ratio power splitters using multimode interference couplers," IEEE Photon. Technol. Lett. 11, 665-667 (1999). [CrossRef]
  10. H. Ohe, H. Shimizu, and Y. Nakano, "InGaAlAs multiple-quantum-well optical phase modulators based on carrier depletion," IEEE Photon. Technol. Lett. 19, 1816-1818 (2007). [CrossRef]
  11. Q. Lai, M. Bachmann, W. Hunziker, P. A. Besse, and H. Melchior, "Arbitrary ratio power splitters using angled silica on silicon multimode interference couplers," Electron. Lett. 32, 1576-1577 (1996). [CrossRef]
  12. T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, "Silica-based 2x2 multimode interference coupler with arbitrary power splitting ratio," Electron. Lett.  35, 2031-2033 (1999). [CrossRef]
  13. S. Y. Tseng, C. Fuentes-Hernandez, D. Owens, and B. Kippelen, "Variable splitting ratio 2�?2 MMI couplers using multimode waveguide holograms," Opt. Express 15, 9015-9021 (2007). [CrossRef] [PubMed]
  14. D. J. Y. Feng, T. S. Lay, and T. Y. Chang, "Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections," Opt. Express 15, 1588-1593 (2007). [CrossRef] [PubMed]
  15. BeamPROP, version 5.1, RSoft Inc., NY (2005).
  16. FimmProp, version 4.3, Photon Design, Oxford, UK (2004).
  17. D. J. Y. Feng, T. S. Lay, and T. Y. Chang, "Compact 2x2 Couplers for Unequal Splitting of Power Obtained by Cascading of Short MMI Sections," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA25, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2007-JThA25

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited