OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8332–8341
« Show journal navigation

Widening of Long-range femtosecond laser filaments in turbulent air

Yuan-yuan Ma, Xin Lu, Ting-ting Xi, Qi-huang Gong, and Jie Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8332-8341 (2008)
http://dx.doi.org/10.1364/OE.16.008332


View Full Text Article

Acrobat PDF (798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of air turbulence on the long-range filamentation of femtosecond laser pulses has been numerically investigated. Simulations are performed for different parameters of air turbulence and laser pulses. Simulation results indicate that the diameter of filaments formed by free propagated fs laser pulse can be widened to mm level under air turbulence. However, the widening effect can be suppressed if the propagating distance before the on-set position of filamentation becomes shorter. The reduction of non-linear focal length can be realized by pre-focusing of the laser pulse or increasing of the laser intensity. The effect of the inner scale of air turbulence on the filamentation has also been studied.

© 2008 Optical Society of America

1. Introduction

The filamentation of intense femtosecond (fs) laser pulses in the atmosphere [1

1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femotosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995). [CrossRef] [PubMed]

, 2

2. J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000). [CrossRef]

, 3

3. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004). [CrossRef]

, 4

4. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999). [CrossRef]

, 5

5. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004). [CrossRef]

] has attracted many interests of scientists during the last few years due to its potential applications such as atmospheric remote sensing and lighting control [6

6. P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

, 7

7. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

, 8

8. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2007). [CrossRef]

, 9

9. M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007). [CrossRef] [PubMed]

, 10

10. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008) [CrossRef]

, 11

11. X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995). [CrossRef]

, 12

12. B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999). [CrossRef]

, 13

13. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

, 14

14. V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003). [CrossRef]

, 15

15. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004). [CrossRef]

, 16

16. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004). [CrossRef]

]. For these practical applications, the laser pulse has to be launched into space of high altitude. Hence, a deeper understanding of filamentation in natural air is of great importance.

For deep investigation of the widening filamentation, we present in this paper the systematic simulation of filamentation in turbulent atmosphere. The widening of filament diameter to mm level was induced for freely propagated fs pulse under air turbulence. The effect of nonlinear focal length on the filamentation under air turbulence was also studied by varying the initial focusing condition and initial pulse duration.

2. Numerical simulation model

The classical equations describing the propagation of ultra-short laser pulses consist of a (3D+1)-dimensional extended nonlinear Schrödinger (NLS) equation for the electric field envelope, and the evolution equation for the local plasma density [24

24. T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006). [CrossRef] [PubMed]

]:

Ez=i2kΔEik22Eτ2+ikn2|E|2E+iknEikωpe2(ρ)ω02Eβ(K)2|E|2K2E
(1)
ρt=β(K)Kh¯ω0E2K(1ρρat)
(2)

In the simulation, equation (1) is solved using full-step (not split-step) Fast Fourier Transformation in transverse space and time dimensions. We use a square grid (256×256) with the step 0.117mm in the transverse section. The whole time interval was discretized into 64 points. The spatial resolution is enough to describe the mm size filaments and basically indicate the characteristics of thin filaments, although it is a little bit lower than that in Ref. [19

19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]

], where the size of spatial grid is 0.08mm. We also performed testing simulation by increasing the number of spatial grids to 512. However, we found no significant change with higher resolution.

The effects of the air turbulence on the laser propagation are usually simulated using thin phase screens which perturb the phase of a propagating wavefront [26

26. E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994). [CrossRef]

]. The chain of phase screens, located along the propagation direction, reproduces adequately the properties of a continuous medium. The laser pulse will propagate freely between the two neighboring phase screens. To describe a wide range of refractive-index fluctuation we use the von Kármán model spectrum [27

27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

]. The detail of the atmospheric turbulence model is presented in the Appendix. There are three important parameters: C 2 n is the structure constant which represents the strength of the turbulence; L 0 and lm are outer and inner scales of turbulence. The outer scale was set to be 1 m [18

18. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999). [CrossRef]

, 19

19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]

, 27

27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

] in our simulation. We varied the inner scale of turbulence lm in the range of 0.5~1.5 mm and C 2 n in the range of 2.0×10-17~2.75×10-16 m-2/3. The separation distance between two neighbouring phase screens is 1 m. A sample phase screen with inner scale lm=1mm is shown in figure 1. The size of the screen is 30 mm×30 mm, 256×256 sample points, and the structure constant C 2 n=2.75×10-16 m-2/3.

Fig. 1. A sample phase screen. The size of the screen is 30 mm by 30 mm, 256 by 256 sample points, lm=1 mm, L 0=1 m and C 2 n=2.75×10-16 m-2/3.

3. Numerical simulations and discussions

In order to reveal the effect of air turbulence on filamentation of fs laser pulse, we performed numerical simulations of propagation in uniform air without turbulence for comparison. In our simulation, a negative chirped pulse with 270 fs duration is used to generate long range filament. The initial beam waist is 10 mm and the pulse energy is 10 mJ. The laser pulse has a Gaussian shape in both spatial and temporal domains.

Figure 2(a) shows the isosurface of energy fluence of laser filament in unperturbed air. The energy fluence is normalized by the maximum in transverse plane for every propagation distance. From Fig. 2(a), we can see the beam smoothly self-focuses and form a thin filament at the distance of 45 m. The transverse intensity distribution of filament with no turbulence for different propagation distances is shown in Fig. 3 (a). The filament diameter, which is defined as full width at the half maximum of the energy fluence on the transverse cross section, is about 146 µm along the propagation distance, as shown in Fig. 4 (solid line). The 146 µm is the average filament diameter we obtained using Gaussian approximation of normalized transverse energy fluence distribution. Figure 2(b) and 2(c) show the energy fluence distribution in weak (C 2 n=2.7×10-17 m-2/3) and moderate (C 2 n=2.75×10-16 m-2/3) turbulent atmosphere respectively with the inner scale lm=1 mm. The beam profile was disturbed in the weak turbulent air (Fig. 2(b)) compared with the beam profile without turbulence in Fig. 2(a). However, the energy still fuses into one thin filament in Fig. 2(b). In figure 2(c), the beam is randomly nucleated and forming a bath of spiky filaments over shorter distances (<30 m) in moderate turbulence. The center of the beam wanders before the beam collapsing [18

18. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999). [CrossRef]

,19

19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]

] and the energy fuses into one thin filament with widened diameter. Many small random local intensity peaks emerge after the propagation distance of 60 m. These small intensity peaks are formed due to the random dynamics of laser field and they disappear quickly. Only the continued and long channel is optical filament, whose length is much longer than the natural diffraction (Rayleigh) length for the beam waist of this optical filament. Figure 3(b) shows the transverse intensity distribution of filament with turbulence for different propagation distances. The beam diameter is about 1~2 mm in most part of the propagation track (Fig. 4 dashed line). The inner scale of turbulence in our simulation is 1 mm, which is relatively small to the transverse size of filament and much smaller than the background energy reservoir, which is extended to cm distance from the filament center for such long filament. As a result, the air turbulence causes phase perturbations on the energy background and this perturbation can be accumulated with propagation. The distortion of wave front can partly break the process of energy replenishment from background reservoir to the filament core [28

28. W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005). [CrossRef]

]. Thus, this effect can lead the widening of filament size on large distance propagation and decrease of the filament intensity to 1012 W/cm2 which is around the ionization threshold of air. Fig. 5 shows peak electron densities for the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b) as a function of propagation distance z. We can find that the electron density generated in the widened filament is only at 100~101 level and the plasma is inefficient in saturating the self-focusing. The electron plasma generation does not play a critical role in the long distance propagation of free filaments. The beam size of the filament keeps stable if the parameters of the turbulence are the same. However, the trajectory of the filament depends on the random number generator used to define the phase screen. Thin filament with higher intensity generates a large spectral broadening due to self phase modulation. The spectral broadening which occurs during filamentation in unperturbed air (a) and in moderate turbulent air (b) is shown in Figure 6. The spectrum of the pulse is broadened in the case of unperturbed air despite the limited simulating spectral range (720 nm~880 nm). However, the pulse in strong turbulent air undergoes a much smaller spectral broadening due to the weak intensity of the filament (Fig. 6(b)).

Fig. 2. (a)The energy fluence distribution in unperturbed air. Energy fluence distribution in weak turbulent air with the structure constant C 2 n=2.0×10-17 m-2/3 (b) and in moderate turbulent air with the structure constant C 2 n=2.75×10-16 m-2/3 (c).
Fig. 3. The transverse intensity distribution of filament in unperturbed air (a) and in turbulent air (b) for different propagation distances. The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.
Fig. 4. The full-width-half-maximum of the beam size in unperturbed air (solid line) and in moderate turbulent air (dashed line). The structure constant C 2 n is 2.75×10-16 m-2/3 and the inner scale of the turbulence lm is 1 mm.
Fig. 5. Peak electron densities for the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b) as a function of propagation distance z. The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.
Fig. 6. Spectral broadening of the femtosecond laser pulse in unperturbed air (a) and in moderate turbulent air (b). The structure constant of the turbulence air is C 2 n=2.75×10-16 m-2/3 and the inner scale lm is 1 mm.

For convenience of indoor experiments, a converging lens is always required to reduce the propagation distance before the on-set position of filaments is formed. Figure 7 shows the energy fluence distribution when a laser pulse with 10mJ energy is prefocused by lenses of focal length 4 m (a), 6 m (b), and 8 m (c). Although the turbulent air is the same as the free propagation (Fig. 2(b)), it can be seen from Fig. 7 that the transverse widths of the filaments are very small for all focal conditions, which agrees well with both numerical and experimental results [29

29. Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006). [CrossRef] [PubMed]

, 30

30. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002). [CrossRef]

]. Earlier experiment [31

31. F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006). [CrossRef]

] shows that for filamentation of prefocused laser pulse, the size of energy background is about 1mm, which is comparable to the inner scale of air turbulence. In this case, the energy background is slightly influenced by the turbulent air. The dynamic energy exchange between the filament and background is successfully taking place to form a thin filament, as that happens in unperturbed air. The influence of the air turbulence reduces with the decrease of the on-set position of filamentation. This is consistent with the experiment of Ref. [17

17. R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006). [CrossRef] [PubMed]

] which reported that a thin filament can be generated by a prefocusing beam even in strong turbulent air.

Fig. 7. The energy fluence distribution of the prefocused laser pulse propagating through turbulent atmosphere. The focal lengths of the convex lenses are (a) 4m, (b) 6m and (c) 8m. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.

The role of inner scale of the turbulence has also been studied. Figure 9 shows the energy fluence distribution of the laser propagation through turbulent atmosphere with different inner scale lm=0.7 mm (a), 1.5 mm (b). The structure constant is fixed on 2.75×10-16 m-2/3. Turbulent atmosphere is comprised of many small turbulent “lenses” with diameters comparable to the inner scale of the turbulence. These lenses can decrease the overall spatial coherence of the laser beam. However, the laser field can keep the local coherence in the spatial range of inner scale. When the inner scale is small (Fig. 9(a)), i.e., lm=0.7 mm, background energy can not effectively replenish the filament core. Then the diameter of the filament keeps wide. When the inner scale is large, (Fig. 9(b)), i.e., lm=1.5 mm, more laser energy can be self-focused into filament. As a result, thin filament can be formed.

Fig. 8. The energy fluence distribution of the laser pulse with different pulse duration in turbulent atmosphere. The pulse duration of unchirped pulse is 50fs (a) and 100fs pulse (b) is negative chirped. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3 and the inner scale lm is 1.0 mm.
Fig. 9. The energy fluence distribution of the laser pulse propagating through atmosphere with different lm: (a) 0.7 mm, (b) 1.5 mm. The structure constant of the turbulence air C 2 n is 2.75×10-16 m-2/3.

4. Conclusion

In conclusion, we have numerically investigated the influence of the air turbulence on the long-range fs laser filamentation in detail. Air turbulence causes random fluctuations of refractive index of the atmosphere. Widening filament of hundred meters is induced by the perturbation of air turbulence. Thin filament in turbulent air can be formed by prefocused laser pulse, due to the much shorter distance required for generation of filament. In addition, our simulation indicates that the perturbation of the air turbulence is increased with the decrease of the inner scale lm.

Appendix

The von Kármán models of atmospheric turbulence, as used in the present calculation, is adopted from Refs. [26

26. E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994). [CrossRef]

,27

27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

]. In this model, the power spectral density Φn (k, z) of the refractive index fluctuation of the atmosphere [27

27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

] is:

Φnkz=0.033Cn2(k2+k02)116exp(k2km2)
(A1)

where C 2 n is the structure constant which represents the strength of the turbulence and k is the three-dimensional spatial wavenumber, k=kx2+ky2+kz2 . The critical wavenumbers correspond to turbulence scale lengths L 0=2π/k 0 and lm=2π/km, where L 0 and lm are outer and inner scales of turbulence respectively. For k<k 0, Φn (k, z) is limited by k 0, and for k>km, Φn (k, z) would be quickly forced to zero.

The generation of phase screen θ′ (x,y) can be realized by filtering a Gaussian white noise process with the square root of the power spectral density, followed by an inverse Fourier transform, using

θxy=k2πΔz++dkxdkyexp[i(kxx+kyy)]Φn12(kx,ky)a(kx,ky)
(A2)

where a(kx,ky) is a zero-mean unit-variance Hermitian complex Gaussian white noise process.

The discrete formulation of (A2) is

θ(jΔx,lΔy)=n=0Nxm=0Ny[anm+ibnm]exp[2π(jnNx+lmNy)]
(A3)

where Δx and Δy are the desired intervals. Nx and Ny are integer indices. a(n,m) and b(n,m) are discrete zero-mean Gaussian variables. The variances are

a2(n,m)=b2(n,m)=ΔkxΔkyΦθ(nΔkx,mΔky)
(3)
Φθ(Δkx,Δky)=2πk2ΔzΦn(kx,ky,kz=0)
(4)

The minimum spatial frequency of the phase screen generated by the FFT-method is 1/ΔxNx. The lower frequency information of the phase screen is given by

θSH(jΔx,lΔy)=p=1Npn=11m=11[a(n,m,p)+ib(n,m,p)]exp[2πi(jn3pNx+lm3pNy)]
(A4)

where Np is the subharmonic levels. a(n, m, p) and b(n, m, p) are discrete zero-mean Gaussian variables, whose variances are

a2(n,m,p)=b2(n,m,p)=ΔkxpΔkypΦθ(nΔkxp,mΔkyp)
(5)

where Δkxpkx/3p, Δkypky/3p.

The total phase screen is the sum of (A3) and (A4)

θ(jΔx,lΔy)=θ(jΔx,lΔy)+θSH(jΔx,y)
(A5)

And the random fluctuations of refractive index induced by air turbulence is

n=θ(jΔx,lΔy)kz
(A6)

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos 60621063, 10634020, 60478047, 10734130 and 10521002), the National Key Basic Research Special Foundation of China under Grant No 2007CB815101, No 2006CB806007, and the National Hi-tech ICF Programme.

References and links

1.

A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femotosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995). [CrossRef] [PubMed]

2.

J. Kasparian, R. Sauerbrey, and S. L. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B 71, 877–879 (2000). [CrossRef]

3.

S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters,” Phys. Rev. E 70, 046602 (2004). [CrossRef]

4.

M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phy. Rev. Lett. 83, 2939–2941 (1999). [CrossRef]

5.

L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. -P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phy. Rev. Lett. 92, 225002 (2004). [CrossRef]

6.

P. Béjot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salamé, E. Salmon, J. Kasparian, L. Bergé, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, “32 TW atmospheric white-light laser,” Appl. Phys. Lett. 90, 151106-3 (2007).

7.

S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, A. Zigler, Y. Sivan, and G. Fibich, “Control of the filamentation distance and pattern in long-range atmospheric propagation,” Opt. Express 16, 2279–2784 (2007).

8.

J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16, 466–493 (2007). [CrossRef]

9.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes,” Opt. Lett. 32, 2816–2818 (2007). [CrossRef] [PubMed]

10.

T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, “Leader effects on femtosecond-laser-filament-triggered discharges”, Phys. Plasmas 15, 013107-5 (2008) [CrossRef]

11.

X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, “Femtosecond ultraviolet laser pulse induced lighting discharges in gases,” IEEE J. Quant. Electron. 31, 599–612 (1995). [CrossRef]

12.

B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, “The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses,” IEEE Trans. Plasma Sic. 27, 688–700 (1999). [CrossRef]

13.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L Wöste, and J. -P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E 70, 046602 (2004).

14.

V. P. Kandidov, O. G. Kosareva, I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77, 149–165 (2003). [CrossRef]

15.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004). [CrossRef]

16.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004). [CrossRef]

17.

R. Ackermann, G. Méjean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, “Laser filaments generated and transmitted in highly turbulent air,” Opt. Lett. 31, 86–88 (2006). [CrossRef] [PubMed]

18.

V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, “Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher,” Quantum. Electron. 29, 911–915 (1999). [CrossRef]

19.

S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002). [CrossRef]

20.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water,” Appl. Phys. B 75, 595–599 (2002). [CrossRef]

21.

G. Méjean, A. Couairon, Y. -B. André, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization,” Appl. Phys. B 79, 379–382 (2004). [CrossRef]

22.

G. Méjean, C. D. Amico, Y. -B. André, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, “Range of plasma filaments created in air by a multi-terawatt femtosecond laser,” Opt. Commun. 247, 171–180 (2005). [CrossRef]

23.

Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, “Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation,” Phys. Rev. E 74, 066402 (2006). [CrossRef]

24.

T. T. Xi, X. Lu, and J. Zhang, “Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air,” Phys. Rev. Lett. 96, 025003 (2006). [CrossRef] [PubMed]

25.

A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, “Infrared femtosecond light filaments in air: simulations and experiments,” J. Opt. Soc. Am. B , 19, 1117–1131 (2002). [CrossRef]

26.

E. M. Johanson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372 (1994). [CrossRef]

27.

V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA1971).

28.

W. Liu, J. -F. Gravel, F. Théberge, A. Becker, and S. L. Chin, “Background reservoir its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys. B 80, 857–860 (2005). [CrossRef]

29.

Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Spatial evolution of multiple filaments in air induced by femtosecond laser pulses,” Opt. Express 14, 773–778 (2006). [CrossRef] [PubMed]

30.

H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z.M. Sheng, “Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air,” Phys. Rev. E 66, 016406 (2002). [CrossRef]

31.

F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, “Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing,” Phys. Rev. E 74, 036406 (2006). [CrossRef]

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5940) Nonlinear optics : Self-action effects
(260.5950) Physical optics : Self-focusing
(350.5500) Other areas of optics : Propagation

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 25, 2008
Revised Manuscript: April 30, 2008
Manuscript Accepted: May 5, 2008
Published: May 23, 2008

Citation
Yuan-yuan Ma, Xin Lu, Ting-ting Xi, Qi-huang Gong, and Jie Zhang, "Widening of Long-range femtosecond laser filaments in turbulent air," Opt. Express 16, 8332-8341 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8332


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femotosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995). [CrossRef] [PubMed]
  2. J. Kasparian, R. Sauerbrey, and S. L. Chin, "The critical laser intensity of self-guided light filaments in air," Appl. Phys. B 71, 877-879 (2000). [CrossRef]
  3. S. Skupin, L. Berg???e, U. Peschel, F. Lederer, G.M???ejean, J. Yu, J. Kasparian, E. Salmon, J. -P.Wolf, M. Rodriguez, L.W¨oste, R. Bourayou, and R. Sauerbrey, "Filamentation of femtosecond light pulses in air: Turbulent cells versus long-range clusters," Phys. Rev. E 70, 046602 (2004). [CrossRef]
  4. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, "Optically turbulent femtosecond light guide in air," Phy. Rev. Lett. 83, 2939-2941 (1999). [CrossRef]
  5. L. Berg???e, S. Skupin, F. Lederer, G. M???ejean, J. Yu, J. Kasparian, E. Salmon, J. -P.Wolf, M. Rodriguez, L.W¨oste, R. Bourayou, and R. Sauerbrey, "Multiple filamentation of terawatt laser pulses in air," Phy. Rev. Lett. 92, 225002 (2004). [CrossRef]
  6. Q1. P. B???ejot, L. Bonacina, J. Extermann, M. Moret, J. P. Wolf, R. Ackermann, N. Lascoux, R. Salam???e, E. Salmon, J. Kasparian, L. Berg???e, S. Champeaux, C. Guet, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, V. Prevot, D. Raffestin, and J. Ribolzi, "32 TW atmospheric white-light laser," Appl. Phys. Lett. 90, 151106-3 (2007).
  7. Q2. S. Eisenmann, E. Louzon, Y. Katzir, T. Palchan, and A. Zigler, Y. Sivan, and G. Fibich, "Control of the filamentation distance and pattern in long-range atmospheric propagation," Opt. Express 16, 2279-2784 (2007).
  8. J. Kasparian and J.-P. Wolf, "Physics and applications of atmospheric nonlinear optics and filamentation," Opt. Express 16, 466-493 (2007). [CrossRef]
  9. M. Kolesik, E. M. Wright, and J. V. Moloney, "Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering processes," Opt. Lett. 32, 2816-2818 (2007). [CrossRef] [PubMed]
  10. Q3Q4. T. Fujii, M. Miki, N. Goto, A. Zhidkov, T. Fukuchi, Y. Oishi, and Koshichi Nemoto, "Leader effects on femtosecond-laser-filament-triggered discharges", Phys. Plasmas 15, 013107-5 (2008) [CrossRef]
  11. X. M. Zhao, J. C. Diels, C. Y. Wang, and J. M. Elizondo, "Femtosecond ultraviolet laser pulse induced lighting discharges in gases," IEEE J. Quant. Electron. 31, 599-612 (1995). [CrossRef]
  12. Q5. B. La Fontaine, F. Vidal, D. Comtois, C. Y. Chien, A. Desparois, T. W. Johnston, J. C. Kieffer, H. P. Mecure, H. Pein, and F. A. M. Rizk, "The influence of electron density on the formation of streamers in electrical discharges triggered with ultrashort laser pulses," IEEE Trans. Plasma Sic. 27, 688-700 (1999). [CrossRef]
  13. M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L.Woste, and J. -P.Wolf, "Kilometer-range nonlinear propagation of femtosecond laser pulses," Phys. Rev. E 70, 046602 (2004).
  14. V. P. Kandidov, O. G. Kosareva,I. S. Golubstov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003). [CrossRef]
  15. G. M???ejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. -P. Wolf, "Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system," Appl. Phys. B 78, 535-537 (2004). [CrossRef]
  16. K. Stelmaszczyk, P. Rohwetter, G. M???ejean, J. Yu, S. Frey, E. Salmon, J. Kasparian, J. -P. Wolf, and L. Woste, "Long-distance remote laser-induced breakdown spectroscopy using filamentation in air," Appl. Phys. Lett. 85, 3977-3979 (2004). [CrossRef]
  17. R. Ackermann, G. M???ejean, J. Kasparian, J. Yu, E. Salmon, and J. -P. Wolf, "Laser filaments generated and transmitted in highly turbulent air," Opt. Lett. 31, 86-88 (2006). [CrossRef] [PubMed]
  18. V. P. Kandidov, O. G. Kosareva, M. P. Tamarov, A. Brodeur, and S. L. Chin, "Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmospher," Quantum. Electron. 29, 911-915 (1999). [CrossRef]
  19. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P. Tamarov, "Filamentation of femtosecond laser pulses in turbulent air," Appl. Phys. B 74, 67-76 (2002). [CrossRef]
  20. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Random deflection of the white light beam during self-focusing and filamentation of a femtosecond laser pulse in water," Appl. Phys. B 75, 595-599 (2002). [CrossRef]
  21. G. M???ejean, A. Couairon, Y. -B. Andr???e, C. D. Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, "Long range self-channeling of infrared laser pulses in air a new propagation regime without ionization," Appl. Phys. B 79,379-382 (2004). [CrossRef]
  22. G. M???ejean, C. D. Amico, Y. -B. Andr???e, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, "Range of plasma filaments created in air by a multi-terawatt femtosecond laser," Opt. Commun. 247, 171-180 (2005). [CrossRef]
  23. Z. Q. Hao, J. Zhang, Z. Zhang, X. H. Yuan, Z. Y. Zheng, X. Lu, Z. H. Wang, J. Y. Zhong, and Y. Q. Liu, "Characteristics of multiple filaments generated by femtosecond laser pulses in air prefocused versus free propagation," Phys. Rev. E 74, 066402 (2006). [CrossRef]
  24. T. T. Xi, X. Lu and J. Zhang, "Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air," Phys. Rev. Lett. 96,025003 (2006). [CrossRef] [PubMed]
  25. A. Couairon, S. Tzortzakis, L. Berg???e, M. Franco, B. Prade, and A. Mysyrowicz, "Infrared femtosecond light filaments in air: simulations and experiments," J. Opt. Soc. Am. B,  19, 1117-1131 (2002). [CrossRef]
  26. E. M. Johanson, and D. T. Gavel, "Simulation of stellar speckle imaging," Proc. SPIE 2200, 372 (1994). [CrossRef]
  27. V. I. Tatarski: The Effects of the Turbulence Atmosphere on the Wave Propagation (Natinoal Technical Information Services, US Department of Commerce, Springfield, VA 1971).
  28. W. Liu, J. -F. Gravel, F. Th???eberge, A. Becker, and S. L. Chin, "Background reservoir its crucial role for longdistance propagation of femtosecond laser pulses in air," Appl. Phys. B 80, 857-860 (2005). [CrossRef]
  29. Z. Q. Hao, J. Zhang, X. Lu, T. T. Xi, Y. T. Li, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, "Spatial evolution of multiple filaments in air induced by femtosecond laser pulses," Opt. Express 14, 773-778 (2006). [CrossRef] [PubMed]
  30. H. Yang, J. Zhang, Y. J. Li, J. Zhang, Y. T. Li, Z. L. Zheng, H. Ten, Z. Y. Wei, and Z. M. Sheng, "Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air," Phys. Rev. E 66, 016406 (2002). [CrossRef]
  31. F. Theberge, W. W. Liu, P. T. Simard, A. Becker, and S. L. Chin, "Plasma density inside a femtosecond laser filament in air Strong dependence on external focusing," Phys. Rev. E 74, 036406 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited