OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 8509–8518
« Show journal navigation

Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice

Luis Javier Martínez, Alfonso Rodríguez Alija, Pablo Aitor Postigo, J.F. Galisteo-López, Matteo Galli, Lucio Claudio Andreani, Christian Seassal, and Pierre Viktorovitch  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 8509-8518 (2008)
http://dx.doi.org/10.1364/OE.16.008509


View Full Text Article

Acrobat PDF (674 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the change of the photonic band structure of the Suzuki-phase photonic crystal lattice when the horizontal mirror symmetry is broken by an underlying Bragg reflector. The structure consists of an InP photonic crystal slab including four InAsP quantum wells, a SiO2 bonding layer, and a bottom high index contrast Si/SiO2 Bragg mirror deposited on a Si wafer. Angle- and polarization-resolved photoluminescence spectroscopy has been used for measuring the photonic band structure and for investigating the coupling to a polarized plane wave in the far field. A drastic change in the k-space photonic dispersion between the structure with and without Bragg reflector is measured. An important enhancement on the photoluminescence emission up to seven times has been obtained for a nearly flat photonic band, which is characteristic of the Suzuki-phase lattice.

© 2008 Optical Society of America

1. Introduction

Since the discovery that certain periodic structures can confine the light, photonic crystals (PC) [1

1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]

, 2

2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]

] have been deeply studied due to the possibility of accurate control of the light at the wavelength scale [3

3. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlag, New York, 2004).

, 4

4. J.M. Lourtioz, H. Benisty, V. Berger, J. M. Gérad, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, Berlin, 2005).

]. Particular interest has been devoted to the use of two-dimensional photonic crystal slabs (2D-PCs) for the development of such building blocks of the future integrated photonic circuits [5

5. S. Noda, “Two- and three-dimensional photonic crystals in III-V semiconductors,” MRS Bull. 26, 618–621 (2001). [CrossRef]

] as photonic crystal lasers [6

6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999). [CrossRef] [PubMed]

, 7

7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002). [CrossRef]

, 8

8. Han-Youl Ryu, Soon-Hong Kwon, Yong-Jae Lee, Yong-Hee Lee, and Jeong-Soo Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476 (2002). [CrossRef]

] and photonic crystal waveguides [9

9. T. Baba, N. Fukaya, and Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–656 (1999). [CrossRef]

, 10

10. M. Loncar, D. Nedeljkovic, T. Doll, J. Vučković, A Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000). [CrossRef]

]. A way for improving the properties of 2D-PCs is to combine them with one-dimensional Bragg reflectors. Some devices combining a 2D-PC and a one-dimensional Bragg reflector have been already done [11

11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

, 12

12. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal,” Opt. Express 14, 9269–9276 (2006). [CrossRef] [PubMed]

, 13

13. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectance with a single quantum dot,” Nature (London) 450857–861 (2007). [CrossRef] [PubMed]

, 14

14. Tien-Chang Lu, Shih-Wei Chen, Li-Fan Li, Tsung-Ting Kao, Chih-Chiang Kao, Peichen Yu, Hao-Chung Kuo, Shing-Chung Wang, and Shanhui Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92011129 (2008). [CrossRef]

]. The combination of a Bragg reflector with an active 2D-PC slab can enhance the quality factor of the resonant mode giving rise to a decreasing of the lasing threshold [11

11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

, 12

12. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal,” Opt. Express 14, 9269–9276 (2006). [CrossRef] [PubMed]

]. In this way, we study the actual effect of the Bragg mirror on the photonic bands. For this purpose, we have fabricated the Suzuki-phase (SP) 2D-PC [15

15. A.R. Alija, L.J. Martínez, P.A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L.C. Andreani, C. Seassal, and P. Viktorovitch, “Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15704–713 (2007). [CrossRef] [PubMed]

] in samples with and without bottom Bragg reflectors. The Suzuki lattice belongs to a set of 2D structures, like also the graphite and the Archimedean lattices [16

16. D. Cassagne, C. Jouanin, and D. Bertho, “Photonic band gaps in a two-dimensional graphite structure,” Phys. Rev. B 52, R2217–R2220 (1995). [CrossRef]

, 17

17. S. David, A. Chelnokov, and J.-M. Lourtioz, “Isotropic Photonic Structures: Archimedean-Like Tilings and Quasi-Crystals,” IEEE J. Quantum Electron. 37, 1427–1434 (2001). [CrossRef]

], which possess a basis made of several rods per unit cell. All these lattices seem to support several low-dispersive photonic bands, similar to coupled cavity arrays [18

18. H. Altug and J. Vučković, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004). [CrossRef]

]. The SP lattice presents two features that are very useful for this study: On one side, it has a complex photonic band structure in two dimensions, which allows to probe several bands in the region of wavelengths of interest (around 1500 nm). On the other side, the SP pattern presents a flat band along the direction ΓX1, well isolated from other bands and which shape remains almost unchanged when we calculate the band structure in the “symmetric” and in the “nonsymmetric” or full band approach [15

15. A.R. Alija, L.J. Martínez, P.A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L.C. Andreani, C. Seassal, and P. Viktorovitch, “Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15704–713 (2007). [CrossRef] [PubMed]

]. The fabricated structures were characterized by polarization-resolved angle-resolved photoluminescense (PR-ARP) in order to obtain the photonic band structure and its polarization. A drastic difference in the photonic band structure was measured between the samples with and without Bragg mirror. Moreover, an important enhancement of the intensity of the photoluminescense (PL) emission between four and seven times for one particular photonic band was measured.

Fig. 1. Layout of the transversal section of the fabricated structures. (a) InP/InAsP layer epitaxy bonded to a Si wafer. (b) InP/InAsP layer epitaxy bonded to a Bragg reflector on top of the Si wafer. (c) Scanning electron microscopy (SEM) image of the fabricated structure with Bragg mirror.

2. Fabrication and Optical characterization

2.1. Fabrication

The SP PC lattice was fabricated in two kinds of semiconductor slabs. The first one (Fig. 1(a)) consists of an InP slab incorporating four In 0.65 As 0.35 P/InP quantum wells grown on an InP substrate by molecular beam epitaxy. The layer has a thickness d=237 nm. The epitaxy is transferred onto a silicon-on-silica substrate by wafer bonding (SiO2 thickness=0.9±0.1µm) [19

19. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP Bonded Membrane Photonics Components and Circuits: Toward 2.5 Dimensional Micro-Nano-Photonics,” IEEE J. Quantum Electron. 11, 395–407 (2005). [CrossRef]

]. The second one (Fig. 1(b)) consists of an InP slab containing the same quantum well structure as before. The thickness is d=250 nm. A three pair quarter-wavelength Si/SiO 2 is deposited in the top of a Si wafer by low pressure chemical vapor deposition. The thickness of the Si and SiO 2 λ/4 layers are 110 nm and 255 nm, respectively. A reflectance spectra of the Bragg mirror is shown in Ref.[11

11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

]. The epitaxial structure is transferred on the top of the Bragg mirror by SiO 2 wafer bonding. The thickness of the SiO 2 bonding layer is dSiO2=790nm [11

11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

]. Both structures present a strong PL around 1.5µm.

A 90 nm-thick SiO 2 layer was deposited by plasma assisted sputtering on top of both samples as mask layer for the etching process. Electron-beam lithography and reactive ion-etching were used for the patterning [20

20. A. R. Alija, L. J. Martínez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]

]. For the structure without Bragg mirror the lattice parameter a is 455 nm (d/a=0.514) while for the structure with Bragg mirror a=484 nm (d/a=0.516). It is important to have the same d/a value for both samples because the photonic bands change with the thickness of the slab [21

21. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999). [CrossRef]

, 22

22. L. C. Andreani and M. Agio, “Photonic bands and gap maps in a photonic crystal slab,” IEEE J. Quantum Electron. 38, 891–898 (2002). [CrossRef]

, 23

23. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006). [CrossRef]

], which may prevent easy comparison of the emission properties between structures. The same value of the radius of the holes was r=0.33a for both structures. The size of the fabricated structures was 25µm×25µm for the sample without Bragg and 30µm×30µm for the sample with Bragg.

Fig. 2. (a) Suzuki lattice with the axes in the XY plane. (b) Schematic drawing of the experimental geometry, for the specific case of Γ-X1 orientation, with the polarization directions of the electric field with respect to the plane of observation. Under specular reflection σ^ kz with respect to a vertical mirror plane including the wavevector, transverse magnetic or p-modes are even (σkz=+1) while transverse electric or s-modes are odd (σkz=-1).

2.2. Optical characterization

PR-ARP spectroscopy was used for optical characterization. The samples were optically pumped with a 635nm laser diode through a 10× (NA=0.26) objective placed at an angle of 45° with respect to normal incidence. The angle-resolved PL emission was collected by a fiber coupled to a Fourier-transform spectrometer (Bruker IFS66/s). An InGaAs p-i-n photodiode was used as detector. The PL at room temperature can be collected with an angular resolution of ±1°. The PL was collected at different angles from 0° to 30° at intervals of 5° along the directions Γ-X1 and Γ-X2 with a linear polarizer in the collection arm. The measured PL spectra were used to determine the photonic band dispersion through conservation of the wavevector parallel to the sample surface [24

24. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255 (1999). [CrossRef]

, 25

25. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, R113111 (2002). [CrossRef]

, 26

26. A. David, C. Meier, R. Sharma, F.S. Diana, S.P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87, 101107 (2005). [CrossRef]

, 27

27. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335 (2005). [CrossRef]

, 28

28. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88, 251114 (2006). [CrossRef]

], and their polarization.

Fig. 3. Normalized PL spectra along the direction Γ-X1, for the sample without Bragg (a,c) and for the sample with Bragg reflector (b,d) at angle θ=25°. Blue line for even (σkz=+1) or p-polarization, red line for odd (σkz=-1) or s-polarization with respect to a vertical mirror plane.

The axes of polarization and the experimental geometry are defined according to Fig. 2. For incidence in a plane along the Γ-X1 direction, since the xz plane is a mirror plane of the Suzuki-phase lattice, the electromagnetic field can be even or odd under the mirror reflection operation σ^ kz=σ^ xz: the former states are denoted as σkz=+1, while the latter are denoted as σkz=-1. For incidence in a plane along the Γ-X2 direction, since the yz plane is again a mirror plane of the Suzuki lattice, the eigenstates of the electromagnetic field can be even (σkz=+1) or odd (σkz=-1) under the mirror reflection operation σ^ kz=σ^ yz. We notice that σkz=+1 states are coupled to transverse-magnetic or p-polarized light with respect to the observation plane shown in Fig. 2(b), while σkz=-1 states are coupled to transverse electric or s-polarized light: these denominations, however, relate only to vertical mirror symmetry σ^ kz and have nothing to do with specular reflection σ^ xy with respect to the xy plane, which is not a symmetry operation of the structure with Bragg.

Fig. 4. Real part of magnetic field component Hz at the Γ point for the photonic modes corresponding to the resonant structures in Fig. 3(a) at ωa/(2πc)=0.31 (fifth band) and in Fig. 3(c) at ωa/(2πc)=0.337 (sixth band).

Figure 3 shows four typical normalized PL spectra along the Γ-X1 direction, for one particular angle (θ=25°), for the samples with and without Bragg reflector. The PL spectra were normalized dividing the PL intensity from the patterned area over the PL intensity of a close unpatterned area. Similar spectra were obtained for the rest of the angles of measurement. A clear change in the intensity (Fig. 3(a,b)) and number of peaks (Fig. 3(c–d)) for each polarization (σkz=+1, σkz=-1 respectively) is observed between the samples with and without Bragg reflector. For each angle (θ), the observed peaks were fitted to gaussian functions. The center of the fit function was extracted and plotted versus the parallel component of the wavevector.

Figure 4 shows the real part of the magnetic field component Hz at the Γ point for the photonic modes corresponding to the resonant structures in Fig. 3(a) around ωa/(2πc)=0.31 and in Fig. 3(c) around ωa/(2πc)=0.337. These modes correspond to the fifth and the sixth band, respectively, of the sample without Bragg. Considering that the magnetic field H is a pseudo (or axial) vector, we notice that the fifth band is even along the Γ-X1 direction (σxz=+1) and odd along the Γ-X2 direction (σyz=-1). Thus, we expect the fifth band to couple to p-polarized light along the Γ-X1 direction and to s-polarized light along the Γ-X2 direction. The sixth band, instead, is odd along the Γ-X1 direction (σxz=-1) and even along the Γ-X2 direction (σyz=+1), thus it couples to s-polarized light along Γ-X1 and to p-polarized light along Γ-X2. These results are in agreement with those shown in Fig. 3(a,c) and show that polarization-resolved PL is a powerful tool to identify photonic bands through their symmetry properties.

Fig. 5. Photonic band structure of the Suzuki-phase lattice. Blue color for bands with σkz=+1 polarization. Red color for bands mainly σkz=-1 polarized. (a) Sample without Bragg: Solid lines show the bands calculated by guided-mode expansion in the “symmetric” approximation with the parameters d/a=0.514 and r/a=0.33. Only σxy=+1 or TE-like modes are shown. Circles: measured points. (b) Sample with Bragg reflector: Solid lines show the full band structure calculated by guided-mode expansion with the parameters d/a=0.514 and r/a=0.33. Filled points for σkz=-1 polarization. Blue open circles for σkz=+1 polarization.
Fig. 6. Polarization resolved photonic band structure measured for the sample with Bragg mirror. Point label indicates the normalized intensity of emission. Solid curves are calculated with guided-mode expansion: blue bands for bands with σkz=+1 or p-polarization, red color for bands with σkz=-1 or s-polarization. Arrow indicates the direction of the k-vector. Labels above the graphs indicate the direction of the axis of the polarizer in relation to the axes defined in Fig. 2.

3. Results

Fig. 7. Fifth band along the direction Γ-X1. The numeric labels indicate the normalized intensity. (a) Sample without Bragg: Blue color for bands with σkz=+1 or p-polarization. Red color for bands mainly σkz=-1 or s-polarization. Blue dots for measured points detecting p-polarized light. (b) Sample with Bragg: σkz=-1 or s-polarization. Red dots for experimental points detecting s-polarized light. (c) Sample with Bragg: σkz=+1 or p-polarization. Blue dots for measured points detecting p-polarized light.

Figure 6 shows the normalized intensities measured for the Γ-X1 and Γ-X2 directions of the sample with the Bragg mirror. The data show that the photonic bands that should correspond to “TM-like” modes (electric field along z) can be measured, despite the emission of the quantum wells is mainly “TE-like”polarized (electric field in xy plane). This is naturally explained by the breaking of horizontal mirror symmetry σ^ xy in the sample with Bragg. On the other hand, vertical mirror symmetry σ^ kz along the Γ-X1 and Γ-X2 orientation is preserved even in the sample with Bragg and pure σkz=+1 (p) or σkz=-1 (s) modes are expected. However, mixing of p/s polarizations is also observed in some bands and for some k-vectors with different intensities for each polarization. In general the degree of polarization defined as ρ=(IxIy)(Ix+Iy) corresponds to the mixing induced by any symmetry-breaking effect present in the sample. It is remarkable that the fifth band which has p-polarization along the direction Γ-X1 shows also s-component which was not observed in the sample without Bragg mirror. This band has a degree of polarization (ρ) between 86% and 91%. The polarization mixing effect is attributed to the presence of disorder (variation of hole size, position, micro-roughness of hole sidewalls, mainly) which breaks mirror symmetry and whose effect may be enhanced in the sample with Bragg.

Figure 7 shows the fifth band for both samples and the calculated photonic band structure. According to the calculations, the fifth band is nearly flat along the Γ-X1 direction, well isolated in frequency and remains almost unchanged in the “symmetric” and full band approach. This makes the fifth band very suitable for the comparison of the intensity of emission between both samples with and without Bragg mirror. For this band the quality factors (Qs) are slightly higher (below two times) for the sample with Bragg mirror. The intensity of the emission for p-polarization is between 4 and 7 times higher for the sample with Bragg mirror in the whole wavevector (corresponding to angular) range, except for the Γ point, where the enhancement is 1.9. The enhancement of PL signal towards the vertical direction arises from multiple reflections by the Bragg mirrors in the SiO2 wafer bonding layer, as previously analyzed in Ref.[11

11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

]. Notice that even at the X1 point, the internal angle in the SiO2 layer is calculated to be around 20 degrees, which is well within the angular acceptance of a Si/SiO2 Bragg reflector. This results in an almost k-independent enhancement, which is interesting for prospective applications of the Suzuki lattice to low-threshold lasing.

4. Summary

We have fabricated and measured the SP lattice on two kinds of InP semiconductor slabs with InAsP/InP quantum wells as active layer with and without underlying Bragg mirror. PR-ARP spectroscopy was used for the optical characterization. For the structure without Bragg reflector the experimental data are well fit by a “symmetric” calculation. For the sample with Bragg mirror are best fit by a full band calculation (i.e., TE-like and TM-like modes are coupled). A mixing of p/s polarizations defined with respect to a vertical mirror plane is observed for the structure with Bragg, whereas the polarization is well defined for the non-Bragg sample. An enhancement on the photoluminescence emission up to seven times has been obtained for a flat photonic band along the Γ-X1 direction, which is the main distinctive feature of the Suzuki-phase photonic lattice.

Acknowledgments

L.J. Martínez thanks an I3P fellowship and A.R. Alija thanks a FPU fellowship AP2002-0474. The authors would like to acknowledge support from European Networks of Excellence IST-2-511616-NOE (PHOREMOST), IST-004525-NOE (ePIXnet), and NMP4-CT-2004-500101 (SANDIE), projects NAN2004-08843-C05-04, NAN2004-09109-C04-01, TEC-2005-05781-C03-01, CONSOLIDER-Ingenio 2010 CSD2006-00019 and CARIPLO Foundation. The epitaxial structure was grown by Philippe Regreny, at INL. J.M. Fedeli and L. Di Cioccio, from CEA-LETI, are acknowledged for Bragg reflector deposition and molecular bonding.

References and links

1.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]

2.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]

3.

K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlag, New York, 2004).

4.

J.M. Lourtioz, H. Benisty, V. Berger, J. M. Gérad, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, Berlin, 2005).

5.

S. Noda, “Two- and three-dimensional photonic crystals in III-V semiconductors,” MRS Bull. 26, 618–621 (2001). [CrossRef]

6.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819 (1999). [CrossRef] [PubMed]

7.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002). [CrossRef]

8.

Han-Youl Ryu, Soon-Hong Kwon, Yong-Jae Lee, Yong-Hee Lee, and Jeong-Soo Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476 (2002). [CrossRef]

9.

T. Baba, N. Fukaya, and Yonekura, “Observation of light propagation in photonic crystal optical waveguides with bends,” Electron. Lett. 35, 654–656 (1999). [CrossRef]

10.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vučković, A Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000). [CrossRef]

11.

B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli,“Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]

12.

B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, “Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal,” Opt. Express 14, 9269–9276 (2006). [CrossRef] [PubMed]

13.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectance with a single quantum dot,” Nature (London) 450857–861 (2007). [CrossRef] [PubMed]

14.

Tien-Chang Lu, Shih-Wei Chen, Li-Fan Li, Tsung-Ting Kao, Chih-Chiang Kao, Peichen Yu, Hao-Chung Kuo, Shing-Chung Wang, and Shanhui Fan, “GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92011129 (2008). [CrossRef]

15.

A.R. Alija, L.J. Martínez, P.A. Postigo, J. Sánchez-Dehesa, M. Galli, A. Politi, M. Patrini, L.C. Andreani, C. Seassal, and P. Viktorovitch, “Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy,” Opt. Express 15704–713 (2007). [CrossRef] [PubMed]

16.

D. Cassagne, C. Jouanin, and D. Bertho, “Photonic band gaps in a two-dimensional graphite structure,” Phys. Rev. B 52, R2217–R2220 (1995). [CrossRef]

17.

S. David, A. Chelnokov, and J.-M. Lourtioz, “Isotropic Photonic Structures: Archimedean-Like Tilings and Quasi-Crystals,” IEEE J. Quantum Electron. 37, 1427–1434 (2001). [CrossRef]

18.

H. Altug and J. Vučković, “Two-dimensional coupled photonic crystal resonator arrays,” Appl. Phys. Lett. 84, 161–163 (2004). [CrossRef]

19.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J.P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP Bonded Membrane Photonics Components and Circuits: Toward 2.5 Dimensional Micro-Nano-Photonics,” IEEE J. Quantum Electron. 11, 395–407 (2005). [CrossRef]

20.

A. R. Alija, L. J. Martínez, P. A. Postigo, C. Seassal, and P. Viktorovitch, “Coupled-cavity two-dimensional photonic crystal waveguide ring laser,” Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]

21.

S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751 (1999). [CrossRef]

22.

L. C. Andreani and M. Agio, “Photonic bands and gap maps in a photonic crystal slab,” IEEE J. Quantum Electron. 38, 891–898 (2002). [CrossRef]

23.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006). [CrossRef]

24.

V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255 (1999). [CrossRef]

25.

M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65, R113111 (2002). [CrossRef]

26.

A. David, C. Meier, R. Sharma, F.S. Diana, S.P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, “Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction,” Appl. Phys. Lett. 87, 101107 (2005). [CrossRef]

27.

K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335 (2005). [CrossRef]

28.

M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, “Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides,” Appl. Phys. Lett. 88, 251114 (2006). [CrossRef]

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5230) Optoelectronics : Photoluminescence
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optoelectronics

History
Original Manuscript: March 25, 2008
Revised Manuscript: April 28, 2008
Manuscript Accepted: April 28, 2008
Published: May 27, 2008

Citation
Luis Javier Martinez, Alfonso Rodriguez Alija, Pablo Aitor Postigo, J. F. Galisteo-López, Matteo Galli, Lucio Claudio Andreani, Christian Seassal, and Pierre Viktorovitch, "Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice," Opt. Express 16, 8509-8518 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8509


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications (Springer-Verlag, New York, 2004).
  4. J. M. Lourtioz, H. Benisty, V. Berger, J. M. Gerad, D. Maystre, and A. Tchelnokov, Photonic Crystals (Springer, Berlin, 2005).
  5. S. Noda, "Two- and three-dimensional photonic crystals in III-V semiconductors,"MRS Bull. 26, 618-621 (2001). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O???Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819 (1999). [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d???Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  8. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, "Very-lowthreshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476 (2002). [CrossRef]
  9. T. Baba, N. Fukaya and Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-656 (1999). [CrossRef]
  10. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A Scherer, and T. P. Pearsall, "Waveguiding in planar photonic crystals," Appl. Phys. Lett. 77, 1937-1939 (2000). [CrossRef]
  11. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror," Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]
  12. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J.-M. Fedeli, "Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006). [CrossRef] [PubMed]
  13. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovc, "Controlling cavity reflectance with a single quantum dot," Nature (London) 450857-861 (2007). [CrossRef] [PubMed]
  14. T.-C. Lu, S.-W. Chen, L.-F. Li, T.-T. Kao, C.-C. Kao, P. Yu, H.-C. Kuo, S.-C. Wang, and S. Fan, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector," Appl. Phys. Lett. 92, 011129 (2008). [CrossRef]
  15. A. R. Alija, L. J. Mart?nez, P. A. Postigo, J. Sanchez-Dehesa, M. Galli, A. Politi, M. Patrini, L.C. Andreani, C. Seassal, and P. Viktorovitch, "Theoretical and experimental study of the Suzukiphase photonic crystal lattice by angle-resolved photoluminescence spectroscopy," Opt. Express 15, 704-713 (2007). [CrossRef] [PubMed]
  16. D. Cassagne, and C. Jouanin, and D. Bertho, "Photonic band gaps in a two-dimensional graphite structure," Phys. Rev. B 52, R2217-R2220 (1995). [CrossRef]
  17. S. David, A. Chelnokov, and J.-M. Lourtioz, "Isotropic Photonic Structures: Archimedean-Like Tilings and Quasi-Crystals," IEEE J. Quantum Electron. 37, 1427-1434 (2001). [CrossRef]
  18. H. Altug and J. Vuckovic, "Two-dimensional coupled photonic crystal resonator arrays," Appl. Phys. Lett. 84, 161-163 (2004). [CrossRef]
  19. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d???Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP Bonded Membrane Photonics Components and Circuits: Toward 2.5 Dimensional Micro-Nano-Photonics," IEEE J. Quantum Electron. 11, 395-407 (2005). [CrossRef]
  20. A. R. Alija, L. J. Mart?nez, P. A. Postigo, C. Seassal, and P. Viktorovitch, "Coupled-cavity twodimensional photonic crystal waveguide ring laser," Appl. Phys. Lett. 89, 101102 (2006). [CrossRef]
  21. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999). [CrossRef]
  22. L. C. Andreani and M. Agio, "Photonic bands and gap maps in a photonic crystal slab," IEEE J. Quantum Electron. 38, 891-898 (2002). [CrossRef]
  23. L. C. Andreani, and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114 (2006). [CrossRef]
  24. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255 (1999). [CrossRef]
  25. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, "Spectroscopy of photonic bands in macroporous silicon photonic crystals," Phys. Rev. B 65, R113111 (2002). [CrossRef]
  26. A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005). [CrossRef]
  27. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, "Lasing band-edge identification for a surface-emitting photonic crystal laser," IEEE J. Sel. Areas Commun. 23, 1335 (2005). [CrossRef]
  28. M. Galli, A. Politi, M. Belotti, D. Gerace, M. Liscidini, M. Patrini, L. C. Andreani, M. Miritello, A. Irrera, F. Priolo, and Y. Chen, "Strong enhancement of Er3+ emission at room temperature in silicon-on-insulator photonic crystal waveguides," Appl. Phys. Lett. 88, 251114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited