OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 12 — Jun. 9, 2008
  • pp: 9205–9212
« Show journal navigation

Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids

Yonghao Xu, Xianfeng Chen, and Yu Zhu  »View Author Affiliations


Optics Express, Vol. 16, Issue 12, pp. 9205-9212 (2008)
http://dx.doi.org/10.1364/OE.16.009205


View Full Text Article

Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper gives the simulation results on micro-diameter-scale liquid core optical fiber (LCOF) filled with different kinds of liquids. The nonlinear and group velocity dispersion (GVD) properties of the micro-diameter-scale LCOF are achieved. The simulation of supercontinuum generation of LCOF is also obtained. The calculations show that LOCF can provide huge nonlinear parameter and large span of slow varying GVD characteristics in the infrared region, which have potential applications in optical communications and nonlinear optics. Besides, LOCF has advantage of easy fabricating and robustness compared with silica nano-wire.

© 2008 Optical Society of America

1. Introduction

The single-mode guiding properties of micro- or submicro-diameter silica fibers show the tight-confinement ability and a slow variation with small group velocity dispersion (GVD) values in the anomalous dispersion [1

1. L. M. Tong, J. Y. Lou, and E. Mazur “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef] [PubMed]

]. It has a large number of applications in optical sensing, pulse compression, optical frequency metrology and so on [2–7

2. J. Y. Lou, L. M. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 12, 2135–2140 (2005). [CrossRef]

]. For applications in nonlinear optics, lager nonlinear parameter (γ) is preferred. There are two methods to achieve large nonlinear parameter (γ) in a fiber. One is to decrease the effective area of fiber, and the other method is to choose the material with large nonlinear coefficient (n2). In the first approach, photonic crystal fiber and tapered silica fiber are fabricated to decrease the effective area, so that the nonlinear parameter (γ) can be greatly enhanced [1

1. L. M. Tong, J. Y. Lou, and E. Mazur “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef] [PubMed]

, 8

8. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express 12, 5840–5849 (2004). [CrossRef] [PubMed]

]. Unfortunately, the high cost of PCF and the fragileness of tapered fiber prevent them from large-scale manufacturing and further commercial use. On the other hand, because the liquids have much higher nonlinear optical coefficient, people filled the hollow fiber with high index liquids to form a liquid core optical fiber (LCOF) [9

9. G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: Stimulated Raman-Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990). [CrossRef]

]. Stimulated Raman Scattering and supercontinuum are observed in LCOF owing to the large nonlinearity of the liquid [10–15

10. G. S. He and P. N. Prasad, “Stimulated Rayleight-Kerr scattering in a CS2 liquid-core fiber system,” Opt. Commun. 73, 61–164 (1989). [CrossRef]

]. The diameter of the LCOF reported today is usually 10~100µm. It can be expected that when diameter of the LCOF reaches to micrometer or sub-micrometer scale, huge nonlinear parameter (γ) can be obtained owing to both small effective area and high nonlinear optical coefficient. As the development of fabrication of taper silica fibers [16

16. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelenth-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]

], the diameter of the hollow hole can also easily reach to micro-diameter-scale while the outer silica diameter remains as large as about ten micrometers. In additional, the GVD of the tapered fiber can be shifted by variation of the diameter of fiber, and can also be adjusted by coated with thin dielectric or immersed into different liquids [17–20

17. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14, 6993–6998 (2006). [CrossRef] [PubMed]

,21

21. Y. Zhu, X. Chen, and Y. Xu, “Propagation Properties of Single-Mode Liquid-Core Optical Fibers With Subwavelength Diameter” J. Lightwave Technol. 25, 3051–3056 (2007). [CrossRef]

].

2. Mathematic model for micro-diameter-scale LCOF.

The mathematic model in our simulation is illustrated in Fig. 1. The micro-diameter-scale liquid core optical fiber is a cylindrical structure of translation symmetry involving three regions. (Fig. 1(a)): a liquid core (e.g. carbon disulfide) with radius a2, a silica cladding with radius from a2 to a1 and the infinite air cladding, where the D represents the diameter of the liquid core. As an example, we assume the ratio of a2 and a1 is 12.5/0.8 in our calculations. The refractive indices of the liquid core, the silica cladding and the air cladding are n2, n1 and n0, respectively. (Fig. 1(b)).

Fig. 1. Mathematic model of the micro-diameter-scale liquid core optical fiber. (a) Crosssection view and (b) refractive index profile of the fiber.

Solving Maxwell’s equation in cylindrical coordinates (r, Θ, z) leads to the expressions for the components of the electromagnetic field for the mth mode. According to the boundary condition, The longitudinal component of the electromagnetic field and the azimuthal component of the electromagnetic field must be continuous at the inner and outer cylinder surfaces (r=a1 and r=a2). Then we can get eight linear equations satisfied. This equation leads a (8×8) matrix which determinant must be equal to zero to ensure a nontrivial solution. At last, the dispersion equation can be obtained [22

22. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

]. In this paper, only the features of fundamental mode are discussed.

From the reference [18

18. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef] [PubMed]

, 23

23. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared” J. Appl. Phys. 94, 6167–6174 (2003). [CrossRef]

], Sellmeier equations (1) were fitted for the refractive index for the four kinds of liquids:

ncs2(λ)=1.580826+1.52389×102λ2+4.8578×104λ48.2863×105λ6+1.4619×105λ8;
ntoluene(λ)=1.474775+0.699031×102λ2+2.1776×104λ4;
nbenzene(λ)=1.475922+0.967157×102λ25.2538×104λ4+8.5442×105λ62.6163×105λ8;
nnitrobenzene(λ)=1.5205+0.79×102λ2+1.670×103λ43.1×104λ6+3.0×105λ8;
(1)

3. GVD of the micro-diameter-scale LCOF filled with different kinds of liquids.

GVD of the fibers is given by the following equation (2) [24

24. G. P. Agrawal, Nonlinear Fiber Optics - Optics and Photonics, Third Edition, (Academic Press, New York, 2001).

]:

Dispersion=2πcλd2βdω2,
(2)
Fig. 2. The GVD of the micro-diameter-scale LCOF filled for four different kinds of liquid.

Figure 2 shows the GVD curves as a function of wavelength for micro-diameter -scale LCOF filled with four different kinds of liquids and different diameters. The nitrobenzene and benzene have a strong absorption at wavelength larger than 1600nm. From the curves, the GVD is usually thousands of ps·nm-1·km-1. This kind of fiber has the large negative GVD in the visible region. In the infrared region the GVD varies slowly in a large wavelength area, where shows a potential use in supercontinuum generation (further discussions in section 5). For the same diameter, the micro-diameter-scale LCOF filled with carbon disulfide has the maximum GVD value. The GVD (carbon disulfide) is about -1000ps·nm-1·km-1at the wavelength of 800nm and diameter of 800nm. There are no zero dispersion points in the region we presented. Generally, by adjusting the diameter or filling different liquids, the tunable GVD can be obtained.

3. The nonlinear parameter (γ) of the fundamental mode.

The nonlinear parameter γ is important for investigating the nonlinear properties of the fiber. Especially in some nonlinear process, such as self-phase-modulation, Stimulated Raman Scattering and four wave mixing. It can be evaluated as following equation [24]:

γ=n̂2ωcAeff,
(3)

In this formula, the effective area of the mode Aeff can be obtained.

Aeff=(F(x,y)2dxdy)2F(x,y)4dxdy,
(4)

carbondisulfide:n̂2=1.2e18(m2w)
toluene:n̂2=1.3e19(m2w),
(5)
Fig. 3. The effective area of the mode of the micro-diameter-scale liquid core optical fibers filled with carbon disulfide or toluene (a) at the wavelength of 800nm; (b) at the wavelength of 1550nm.
Fig. 4. The nonlinear parameter of the micro-diameter-scale liquid core optical fibers filled with carbon disulfide or toluene (a) at the wavelength of 800nm; (b) at the wavelength of 1550nm.

4. Supercontinuum simulation

Considering the broad transparency and high nonlinear in infrared region, we simulate the SC generation in micro-diameter-scale liquid core optical fiber filled with carbon disulfide. The Nonlinear Schrödinger equation is expressed as follows:

Az={(i2β22T2+16β33T3α2)+iγ[A2+iω01 AT(A2A)TRA2T]}A
(6)

On the right side of equation (6), the first term represents dispersion and absorption of the fiber and the second term shows the nonlinear effect, including self-steering and Raman Effect. To simplify the calculation, we neglect absorption (α), the third-order of β (β3) and Raman Effect (TR) in the equation. The absorption bands in UV range for the two liquid are listed in the references [32–33

32. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004). [CrossRef]

]. By means of split-step Fourier Method, we successfully solve equation (6) and give out the simulation result as following Fig. 5.

Fig. 5. The calculated output spectrum generated by a 1mm long LCOF with 0.6um inner diameter full of (a) carbon disulfide and (b) toluene with a pump wavelength of 800nm, and a pulse duration of 100fs, with different input peak power P

5. Conclusion

In this paper, we discussed the nonlinearity and GVD characterization of micro-diameter-scale liquid core optical fiber filled with different kinds of liquids. These new kinds of micro-diameter-scale LCOF are easier to fabricate than traditional taper fibers owing to the much larger outer diameter. The fibers show huge nonlinear parameters (γ) and tunable GVD. Because the technique to fill the tiny hole of a hollow fiber with liquids has been taken into practice [28–31

28. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express , 13, 3890–3895 (2005). [CrossRef] [PubMed]

], we believe that micro-diameter-scale LCOF will have a potential application in the communication and nonlinear optics.

Acknowledgment

This research was supported by the National Natural Science Foundation of China (No. 10574092); the National Basic Research Program “973” of China (No. 2007CB307000 and 2006CB806000)

References and Links

1.

L. M. Tong, J. Y. Lou, and E. Mazur “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004). [CrossRef] [PubMed]

2.

J. Y. Lou, L. M. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 12, 2135–2140 (2005). [CrossRef]

3.

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46, 1429–1434 (2007). [CrossRef] [PubMed]

4.

M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, “Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser,” Opt. Express 13, 8547–8554 (2005). [CrossRef] [PubMed]

5.

S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef] [PubMed]

6.

N. Karasawa, H. Kakehata, K. Mishina, J. Yamamoto, and S. Kobayashi, “Phase and amplitude comparison between experiment and calculation of ultrabroad-band pulses generated in a taper fiber,” Photon. Technol. Lett. 17, 31–34 (2005). [CrossRef]

7.

M. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12, 3137–3143 (2004). [CrossRef] [PubMed]

8.

R. Zhang, X. Zhang, D. Meiser, and H. Giessen, “Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber,” Opt. Express 12, 5840–5849 (2004). [CrossRef] [PubMed]

9.

G. S. He, R. Burzynski, and P. N. Prasad, “A novel nonlinear optical effect: Stimulated Raman-Kerr scattering in a benzene liquid-core fiber,” J. Chem. Phys. 93, 7647–7655 (1990). [CrossRef]

10.

G. S. He and P. N. Prasad, “Stimulated Rayleight-Kerr scattering in a CS2 liquid-core fiber system,” Opt. Commun. 73, 61–164 (1989). [CrossRef]

11.

G. S. He and G. C. Xu, “Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system,” J.Quantum Electron. 28, 323–329 (1992). [CrossRef]

12.

M. Saito, A. Honda, and K. Uchida, “Photochromic liquid-core fibers with nonlinear input-output characteristics,” J. Lightwave Technol. 21, 2255–2261 (2003). [CrossRef]

13.

J. C. Schaefer and I. Chabay, “Generation of enhanced coherent anti-stokes Raman spectroscopy signals in liquid-filled waveguides,” Opt. Lett. 4, 227–229 (1979). [CrossRef] [PubMed]

14.

G. S. He, M. Yoshida, J. D. Bhawalkar, and P. N. Prasad, “Two-photon resonance-enhanced refractiveindex change and self-focusing in a dye-solution-filled hollow fiber system,” Appl. Opt. 36, 1155–1163 (1997). [CrossRef] [PubMed]

15.

G. S. He, M. Casstevens, R. Burzynski, and X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995). [CrossRef] [PubMed]

16.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelenth-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]

17.

J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14, 6993–6998 (2006). [CrossRef] [PubMed]

18.

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef] [PubMed]

19.

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]

20.

R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, “Group velocity dispersion of tapered fibers immersed in different liquids,” Opt. Express 12, 1700–1707 (2004). [CrossRef] [PubMed]

21.

Y. Zhu, X. Chen, and Y. Xu, “Propagation Properties of Single-Mode Liquid-Core Optical Fibers With Subwavelength Diameter” J. Lightwave Technol. 25, 3051–3056 (2007). [CrossRef]

22.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

23.

Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared” J. Appl. Phys. 94, 6167–6174 (2003). [CrossRef]

24.

G. P. Agrawal, Nonlinear Fiber Optics - Optics and Photonics, Third Edition, (Academic Press, New York, 2001).

25.

S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369,318–324 (2003). [CrossRef]

26.

P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2-regenerative all-optical switch based on a highly nonlinear holey fiber,” Opt. Lett. 26, 1233–1235 (2001). [CrossRef]

27.

K. Kikuchi, “All-optical signal processing using fiber nonlinearity” Lasers and Electro-Optics Society 2, 428–429 (2002).

28.

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel fiber,” Opt. Express , 13, 3890–3895 (2005). [CrossRef] [PubMed]

29.

Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13, 2977–2987 (2005). [CrossRef] [PubMed]

30.

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13, 4786–4791 (2005). [CrossRef] [PubMed]

31.

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135–4140 (2006). [CrossRef] [PubMed]

32.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004). [CrossRef]

33.

K. B. Lodge and D. Danso, “The measurement of fugacity and the Henry’s law constant for volatile organic compounds containing chromophores,” Fluid Phase Equilibria 253, 74–79 (2007). [CrossRef]

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(260.2030) Physical optics : Dispersion

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 21, 2008
Revised Manuscript: May 18, 2008
Manuscript Accepted: May 27, 2008
Published: June 6, 2008

Citation
Yonghao Xu, Xianfeng Chen, and Yu Zhu, "Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids," Opt. Express 16, 9205-9212 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Tong, J. Y. Lou, and E. Mazur "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]
  2. J. Y. Lou, L. M. Tong, and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 12, 2135-2140 (2005). [CrossRef]
  3. K. Huang, S. Yang, and L. Tong, "Modeling of evanescent coupling between two parallel optical nanowires," Appl. Opt. 46, 1429-1434 (2007). [CrossRef] [PubMed]
  4. M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, "Red-green-blue (RGB) light generator using tapered fiber pumped with a frequency-doubled Yb-fiber laser," Opt. Express 13, 8547-8554 (2005). [CrossRef] [PubMed]
  5. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  6. N. Karasawa, H. Kakehata, K. Mishina, J. Yamamoto, and S. Kobayashi, "Phase and amplitude comparison between experiment and calculation of ultrabroad-band pulses generated in a taper fiber," Photon. Technol. Lett. 17, 31-34 (2005). [CrossRef]
  7. M. Foster and A. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004). [CrossRef] [PubMed]
  8. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12, 5840-5849 (2004). [CrossRef] [PubMed]
  9. G. S. He, R. Burzynski, and P. N. Prasad, "A novel nonlinear optical effect: Stimulated Raman-Kerr scattering in a benzene liquid-core fiber," J. Chem. Phys. 93, 7647-7655 (1990). [CrossRef]
  10. G. S. He and P. N. Prasad, "Stimulated Rayleight-Kerr scattering in a CS2 liquid-core fiber system," Opt. Commun. 73, 61-164 (1989). [CrossRef]
  11. G. S. He and G. C. Xu, "Efficient amplification of a broad-band optical signal through stimulated Kerr scattering in a CS2 liquid-core fiber system," J.Quantum Electron. 28, 323-329 (1992). [CrossRef]
  12. M. Saito, A. Honda, and K. Uchida, "Photochromic liquid-core fibers with nonlinear input-output characteristics," J. Lightwave Technol. 21, 2255-2261 (2003). [CrossRef]
  13. J. C. Schaefer and I. Chabay, "Generation of enhanced coherent anti-stokes Raman spectroscopy signals in liquid-filled waveguides," Opt. Lett. 4, 227-229 (1979). [CrossRef] [PubMed]
  14. G. S. He, M. Yoshida, J. D. Bhawalkar, and P. N. Prasad, "Two-photon resonance-enhanced refractive-index change and self-focusing in a dye-solution-filled hollow fiber system," Appl. Opt. 36, 1155-1163 (1997). [CrossRef] [PubMed]
  15. G. S. He, M. Casstevens, R. Burzynski, and X. Li, "Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system," Appl. Opt. 34, 444-454 (1995). [CrossRef] [PubMed]
  16. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelenth-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  17. J. Lou, L. Tong, and Z. Ye, "Dispersion shifts in optical nanowires with thin dielectric coatings," Opt. Express 14, 6993-6998 (2006). [CrossRef] [PubMed]
  18. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006). [CrossRef] [PubMed]
  19. J. M. Dudley and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002). [CrossRef]
  20. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, "Group velocity dispersion of tapered fibers immersed in different liquids," Opt. Express 12, 1700-1707 (2004). [CrossRef] [PubMed]
  21. Y. Zhu, X. Chen, and Y. Xu, "Propagation Properties of Single-Mode Liquid-Core Optical Fibers With Subwavelength Diameter" J. Lightwave Technol. 25, 3051-3056 (2007). [CrossRef]
  22. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  23. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared" J. Appl. Phys. 94, 6167-6174 (2003). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics - Optics and Photonics, Third Edition, (Academic Press, New York, 2001).
  25. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, "An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques," Chem. Phys. Lett. 369, 318-324 (2003). [CrossRef]
  26. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, "2-regenerative all-optical switch based on a highly nonlinear holey fiber," Opt. Lett. 26, 1233-1235 (2001). [CrossRef]
  27. K. Kikuchi, "All-optical signal processing using fiber nonlinearity" Lasers and Electro-Optics Society 2, 428-429 (2002).
  28. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express,  13, 3890-3895 (2005). [CrossRef] [PubMed]
  29. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005). [CrossRef] [PubMed]
  30. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  31. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  32. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, "Two- and three-photon absorption in CS2," Opt. Commun. 231, 431-436 (2004) [CrossRef]
  33. K. B. Lodge and D. Danso, "The measurement of fugacity and the Henry???s law constant for volatile organic compounds containing chromophores," Fluid Phase Equilibria 253, 74-79 (2007) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited