OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 18 — Sep. 1, 2008
  • pp: 13818–13823
« Show journal navigation

High-transmission negative refraction of discrete rod resonators confined in a metal waveguide at visible wavelengths

Changchun Yan, Qiong Wang, Shichuang Zhuo, and Yiping Cui  »View Author Affiliations


Optics Express, Vol. 16, Issue 18, pp. 13818-13823 (2008)
http://dx.doi.org/10.1364/OE.16.013818


View Full Text Article

Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A type of metamaterial composed of a metal waveguide with discrete rod resonators, is investigated in this work for the first time. The simulation results show that the maximum of FOM=-Re(n)/Im(n) reaches 1.12 at the 543.5 nm. For another set of dimensions of the unit cell, the maximum of FOM reaches 1.41 at the wavelength of 721 nm. Our additional large numbers of simulation results show that different negative-index bands in visible wavelengths can be obtained by tuning the geometric dimensions of the unit cell.

© 2008 Optical Society of America

1. Introduction

Below we present an approach to the realization of the LHM, a combination of the first two ways mentioned above. Namely, discrete rod resonators forming a sandwich structure lie in a metal waveguide. Our numerical simulations demonstrate that the negative-index band with high transmission ranges in the visible wavelengths. This approach opens new opportunities for designing negative-index materials in optics.

2. Structure model

As shown in Fig. 1(a), periodic discrete resonator elements, consisting of two metallic rods (24 nm thick Ag) separated by a dielectric layer (12 nm thick MgF2 with the refractive index of 1.38), lie between the two same metallic plates (60 nm thick Ag). All the samples are located on a glass substrate (index n=1.5). This configuration can be fabricated by employing evaporation techniques and standard electron-beam lithography. Obviously, it can be viewed as a two-dimensional metal waveguide. Figure 2(b) exhibits one unit cell, and all dimensions are displayed in the caption under Fig. 1.

Fig. 1. (a) Schematic for a metal waveguide with array of H shape within it. (b) A unit cell with geometric dimensions L=600 nm, W=500 nm, a=120 nm, b=300 nm, g=40 nm, t=24 nm, and s=12 nm. The glass substrate is much thicker than the silver layer. The propagation of the polarized electromagnetic wave is along the z axis, and the electric field and the magnetic field are respectively in the x and y directions.

3. Numerical calculations and discussion

An Electromagnetic Design System (Agilent Corp), based on a finite element method, a commercial electromagnetic mode solver, is employed in our simulations. Furthermore, the optical properties of silver are described by the Drude free electron model,

ε(ω)=1ωp2ω2iωγ,

where ωp is the plasma frequency and γ is the collision frequency. The ωp and γ of silver are respectively 1.22×1016 and 9.0×1013 [19

19. T. OkamotoS. Kawata, M. Ohtsu, and M. Irie (Springer, New York, 2001), Chap. 6, p.97.

]. In our designed structure, the size of the unit cell ρ (i.e., 2t+s) is much smaller than an electromagnetic resonance wavelength λ, reaching ρ/λ<1/9. Thus, an effective medium model can be used in our research. Following the common method [20

20. Z. G. Dong, S. Y. Lei, Q. Li, M. X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007). [CrossRef]

], to excite the negative magnetic response of resonators as well as the negative electric response of wires, the incident electromagnetic waves are polarized with the magnetic field parallel to the y axis (Hy axis) and the electric field parallel to the x axis(Ex axis). Consequently, the propagation direction (wave vector k) is along the z axis. The two wave ports are set in the planes perpendicular to the z axis. The symmetrical perfect magnetic boundaries (corresponding to the boundaries perpendicular to the y axes) is also applied.

Using the S-parameter retrieval methods [21

21. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]

23

23. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]

], the complex refractive index n, wave impedance z, effective permittivity ε and effective permeability µ have been retrieved in Fig. 2. Our retrieved indices in Fig. 2(b) confirm the negative-index band ranging from 517 nm to 564 nm. As shown in Figs. 2(e), we find that, in this negative-index band, Re(ε)<0, while Re(µ)>0. Negative Re(n) is achieved throughout as the condition Γ=ε 1 µ 2+µ 1 ε 2<0 is satisfied [24

24. R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Tech. Lett. 41, 315–316 (2004). [CrossRef]

,25

25. F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime,” Phys. Rev. E 75, 016604 (2007). [CrossRef]

,10

10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]

], where ε=ε 1+iε 2 and µ=µ 1+iµ 2 (see Fig. 1(f)). Figures 3(d) and 3(e) show the strong electromagnetic resonances, occurring near the wavelengths of 545 nm. This resonance can be regarded as an optical LC circuit, with the silver rods providing the inductance L and the MgF2 layer between the rods acting as capacitive elements C. Moreover, capacitance can also be generated between the silver rods and the waveguide wall. Maybe because of this capacitance the electromagnetic resonance occurs near the higher frequencies than those in Ref. [10

10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]

,11

11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

,13

13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]

,15

15. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813nm and single negative at 772nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef] [PubMed]

].

Fig. 2. Fig. 2. (a) Simulated S parameters for the unit cell in Fig. 1(b); (b) retrieved refractive index; (c) retrieved impedance; (d) retrieved permittivity; (e) retrieved permeability. (f) Distributions of the condition Γ and the Re(n).
Fig. 3. Distribution of FOM in the negative-index band in Fig. 2(b).

It is to be noted that an LHM with high transmission is to be expected. In other words, its figure of merit (FOM=-Re(n)/Im(n)) should be as large as possible, i.e., the higher the FOM is, the higher the transmission is. From Fig. 3, we can find that the maximum of FOM arrives at 1.12 near the wavelength of 543.5 nm, which means the highest transmission occurs at this wavelength.

Fig. 4. (a) Simulated S parameters for the unit cell with geometric dimensions L=700 nm, W=640 nm, a=200 nm, b=400 nm, g=40nm, t=30 nm, and s=15 nm; (b) retrieved refractive index; (c) retrieved permittivity; (d) retrieved permeability.
Fig. 5. istribution of FOM in the negative-index band in Fig. 4(b).

In addition, we investigate the influence on the refractive index when the geometric dimensions of the unit cell are changed (the changed parameters are displayed beneath Fig. 4). From Fig. 4(b), we obtain that the negative-index band ranges between 660 nm and 770 nm. The strong electromagnetic resonance shifts toward the wavelengths of 725 nm. Meanwhile, figure 4(d) exhibits a negative permeability band at 717–728 nm, implying the smaller scattering loss than the above case [10

10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]

]. This is verified in Fig. 5. Namely, the maximum of FOM equals 1.41 (higher than 1.12) near 721 nm. This FOM value is quite high. Importantly, it occurs in visible wavelengths and this wavelength is shortest thus far. It is well known that researchers have experimentally and theoretically confirmed the LHMs in the optical range.

However, their FOMs are low (often below 1) [10

10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]

,11

11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

,13

13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]

]. Although the LHMs were demonstrated at 1400 nm with an FOM of 3 [26

26. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at communication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef] [PubMed]

], at 1800 nm with an FOM above 1[27

27. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006). [CrossRef]

], and at 813 nm with an FOM of 1.3 [15

15. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813nm and single negative at 772nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef] [PubMed]

], they still range in the infrared wavelengths. Our additional large numbers of simulations testify that different negative-index bands with high FOMs in visible wavelengths can be obtained by tuning the geometric dimensions of the unit cell.

4. Conclusions

In conclusion, a type of metamaterial composed of a metal waveguide with discrete rod resonators, has been reported in our work. Simulating the S parameters of its unit cell, we have retrieved the complex refractive index n, wave impedance z, effective permittivity ε and effective permeability µ. Our retrieved results have shown that the maximum of FOM reaches 1.12 at the 543.5 nm. For another set of dimensions of the unit cell, the maximum of FOM arrives at 1.41 at the wavelength of 721 nm. This FOM value is quite high, indicating that this metamaterial possesses high transmission. Importantly, it occurs in visible wavelengths and this wavelength is shortest thus far. Our additional large numbers of simulations testify that different negative-index bands in visible wavelengths can be obtained by tuning the geometric dimensions of the unit cell. This approach is greatly effective to the realization of negative refraction at visible wavelengths.

References and links

1.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]

2.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]

3.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001). [CrossRef]

4.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002). [CrossRef]

5.

N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82, 161–163 (2003). [CrossRef]

6.

Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003). [CrossRef]

7.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science , 314, 977–979 (2006). [CrossRef] [PubMed]

8.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]

9.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]

10.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]

11.

V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]

12.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial,” Science 312, 892–894 (2006). [CrossRef] [PubMed]

13.

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). [CrossRef]

14.

G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007). [CrossRef] [PubMed]

15.

U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813nm and single negative at 772nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef] [PubMed]

16.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef] [PubMed]

17.

C. M. Krowne, “Multi-species two-level atomic media displaying electromagnetic left handedness,” Phys. Lett. A 372, 2304–2310 (2008). [CrossRef]

18.

J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, “Tunable negative refraction without absorption via electromagnetically induced chirality,” Phys. Rev. Lett. 99, 073602 (2007). [CrossRef] [PubMed]

19.

T. OkamotoS. Kawata, M. Ohtsu, and M. Irie (Springer, New York, 2001), Chap. 6, p.97.

20.

Z. G. Dong, S. Y. Lei, Q. Li, M. X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007). [CrossRef]

21.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]

22.

S. G. Mao, S. L. Chen, and C. W. Huang, “Effective electromagnetic parameters of novel distributed left-handed microstrip lines,” IEEE Trans. Microwave Theory Tech. 53, 1515–1521 (2005). [CrossRef]

23.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]

24.

R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity,” Microwave Opt. Tech. Lett. 41, 315–316 (2004). [CrossRef]

25.

F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, “Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime,” Phys. Rev. E 75, 016604 (2007). [CrossRef]

26.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at communication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef] [PubMed]

27.

S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006). [CrossRef]

OCIS Codes
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance

ToC Category:
Metamaterials

History
Original Manuscript: May 7, 2008
Revised Manuscript: July 31, 2008
Manuscript Accepted: August 1, 2008
Published: August 22, 2008

Citation
Changchun Yan, Qiong Wang, Shichuang Zhuo, and Yiping Cui, "High-transmission negative refraction of discrete rod resonators confined in a metal waveguide at visible wavelengths," Opt. Express 16, 13818-13823 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-13818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  4. A. Grbic and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys. 92, 5930-5935 (2002). [CrossRef]
  5. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  6. Z. W. Liu, N. Fang, T. J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett. 83, 5184-5186 (2003). [CrossRef]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science,  314, 977-979 (2006). [CrossRef] [PubMed]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  12. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  13. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  14. G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007). [CrossRef] [PubMed]
  15. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. M. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double negative at 813nm and single negative at 772nm," Opt. Lett. 32, 1671-1673 (2007). [CrossRef] [PubMed]
  16. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  17. C. M. Krowne, "Multi-species two-level atomic media displaying electromagnetic left handedness," Phys. Lett. A 372, 2304-2310 (2008). [CrossRef]
  18. J. Kästel, M. Fleischhauer, S. F. Yelin, and R. L. Walsworth, "Tunable negative refraction without absorption via electromagnetically induced chirality," Phys. Rev. Lett. 99, 073602 (2007). [CrossRef] [PubMed]
  19. T. Okamoto, In Near-field Optics and Surface Plasmon Polariton, S. Kawata, M. Ohtsu, and M. Irie, eds., (Springer, New York, 2001), Chap. 6, p.97.
  20. Z. G. Dong, S. Y. Lei, Q. Li, M. X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, "Non-left-handed transmission and bianisotropic effect in a �?-shaped metallic metamaterial," Phys. Rev. B 75, 075117 (2007). [CrossRef]
  21. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  22. S. G. Mao, S. L. Chen, and C. W. Huang, "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microwave Theory Tech. 53, 1515-1521 (2005). [CrossRef]
  23. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005). [CrossRef]
  24. R. A. Depine, and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Tech. Lett. 41, 315-316 (2004). [CrossRef]
  25. F. M. Wang, H. Liu, T. Li, Z. G. Dong, S. N. Zhu, and X. Zhang, "Metamaterial of rod pairs standing on gold plate and its negative refraction property in the far-infrared frequency regime," Phys. Rev. E 75, 016604 (2007). [CrossRef]
  26. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at communication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  27. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," J. Opt. Soc. Am. B 23, 434-438 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited