OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14404–14410
« Show journal navigation

Nanofabrication with controllable localization energy based on the interference modulation of surface plasmons

Xingzhan Wei, Chunlei Du, Xiaochun Dong, Xiangang Luo, Qiling Deng, and Yudong Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14404-14410 (2008)
http://dx.doi.org/10.1364/OE.16.014404


View Full Text Article

Acrobat PDF (624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nanolithography technique based on the interference of surface plasmons (SPs) is proposed and demonstrated to modulate the localized exposure energy. The SP waves participating in interference are excited by two distinct structures, namely, the grating and the nanotaper. Constructive or destructive interference, which ultimately causes an enhanced or reduced modulation to the localized energy, can be obtained merely by adjusting the distance of the grating and the taper. Detailedly speaking, the localized energy can be modulated consecutively with a constant periodicity, and the modulation range of energy is extremely wide, for instance, the maximum energy is nearly 3 orders of magnitude larger than the minimum by our FDTD simulation results. Moreover, since the localized electric field at the taper tip, which leads to the exposure of the photoresist, is extremely sensitive to interference, it suggests a potential way to produce patterns with different depths and critical widths in one chip via beforehand programming and reasonably controlling the corresponding interference of SPs.

© 2008 Optical Society of America

1. Introduction

The rapid growth of nanotechnology is stimulated by the advancement of nanolithography, and the fabrication technologies on the nanometer scale are becoming increasingly important from the viewpoint of application such as the manufacture of quantum devices. Conventional optical lithography has been a major fabrication method in semiconductor industry over the past several decades because of its easy repetition and capability for large-area fabrication. However, it is limited by the physics limitation and its optical resolution is limited to the wavelength of the illumination light. To achieve nanoscale resolution, either the working wavelength is reduced, or the higher numerical aperture has to be adopted. The primary approach of reducing the working wavelength is to directly use light sources with higher photon energy, such as deep-ultraviolet light [1

1. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. V. Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B17, 3262–3266 (1999).

], extreme-ultraviolet light [2

2. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998). [CrossRef]

], soft X-rays [3

3. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998). [CrossRef]

], electron beams [4

4. M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997). [CrossRef]

], and ion beams [5

5. J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993). [CrossRef]

]. However, the cost for instrumentation and processing drastically increases with this reduction of the exposing wavelength. Furthermore, the industrial mass fabrication needs cannot be fulfilled. Another approach, such as immersion photolithography [6

6. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography”, J. Vac. Sci. Technol. B 17, 3306–3309 (1999). [CrossRef]

,7

7. M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol. B 19, 2353–2356 (2001). [CrossRef]

], which makes use of higher numerical aperture is constrained by the highest refractive index of the available nature materials. By collecting the evanescent waves at the near field, several near-field optical lithography methods [8

8. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002). [CrossRef]

, 9

9. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999). [CrossRef]

] have been developed with the resolution beyond the diffraction limit, however, the low optical throughput limits their practical application.

Surface plasmons are electro-magnetic excitations that propagate along a metal-dielectric surface with an exponentially decaying field in both neighboring media [10

10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).

]. The potential of using SPs to manipulate light in the subwavelength space opens up a multitude of new possibilities for subwavelength lithography. Recently a new scheme to achieve nanoscale patterns has been proposed based on the unique properties of SPs. Surface plasmon polaritons (SPPs) which take place of photons as an exposure source have been applied in nanolithography field, providing a new method to produce fine patterns with a resolution of subwavelength scale [11

11. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]

13

13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]

]. A photolithography technique based on the interference of SPs can go far beyond the free-space diffraction limit of the light, and one-dimensional and two-dimensional periodical structures with 40–100nm features can be patterned [14

14. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]

].

2. Modulation of localized energy

A schematic view of the special nanolithography process is shown in Fig. 1 for the simplest case. The combined structure is composed of a taper waveguide integrated with grating structure at both sides. Here, two approaches are introduced to realize the excitation of SPs, one by the grating with reasonable period, and the other by the nanotaper. Generally, there would be a cut off at some waveguide radius beyond which the propagation is not possible [18

18. J. A. Kong, Electromagnetic Wave Theory, 2nd edition (John Wiley & Sons, New York, 1990).

] in the conventional optical fiber supporting guided photonic modes. However, in a plasmonic taper waveguide, the guided photonic modes could be coupled to plasmonic modes at the cut-off point [19

19. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy”, J. Microsc. 210, 220–224 (2003). [CrossRef] [PubMed]

], thus enabling corresponding SPs to propagate toward the taper tip. As is well known, the grating structure can excite the SPs with high efficiency by choosing a reasonable period, and also, a part of SPs can propagate toward the taper tip. It is noted that interference will be produced between SPs at the sidewalls of the taper structure, the resultant SPs then still propagate toward the tip. Subsequently the local field is sharply concentrated at the tip [15

15. A. V. Zayats and I. I. Smolyaninov, “Near-field photonic: surface plasmon polaritons and locallized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003). [CrossRef]

, 17

17. X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express. 15, 14177–14183 (2007). [CrossRef] [PubMed]

], and finally the SPs are adiabatically transformed into LSPs, leading to nanofocusing [20

20. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?,” Phys. Rev. Lett. 87, 167401–167404 (2001). [CrossRef] [PubMed]

].

Fig. 1. Schematic view of the composite structure with controllable localization energy.

The basic principle of the method employed in this work is based on the interference modulation of SPs. The interaction of light and SP is described by the SP dispersion relation [10

10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).

] in Eq. (1):

ksp=k0εd·εmεd+εm
(1)

where k sp is SP wave vector, k 0 is the wave vector of light in vacuum, and ε m and ε d are dielectric constants of a metal and a surrounding dielectric material, respectively. According to the SP dispersion, the wavelength of the excited SPs can become shorter compared with the wavelength of the excitation light. Generally, light cannot excite SPs directly due to the momentum mismatch between the light wave and SP. But, the conversion between light and SPs can be achieved with the existence of momentum matching element, such as a grating structure. By selecting a proper periodicity of grating, the lights can be reasonably coupled to SPs, and the relationship can be described in Eq. (2):

ksp=k0nssinθ±m2πm=1,2,3......
(2)

where θ is the angle-of-incidence, n s is refractive index of the substrate, and ∧ is the period of grating. When the incident light is normal to the substrate (θ=0), by choosing m=1 in our simulation, Eq. (2) can be simplified to

=2πksp
(3)

Numerical simulations were performed using the commercial software opti-FDTD. The numerical values of refractive indices for the quartz and the photoresist are 1.52 and 1.7, respectively. The dielectric constant of the aluminum is taken from the experimental measurement [21

21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

]. The incident light, with the wavelength of 436nm polarized along the x direction, is normal to the substrate. The grating periodicity of 280nm was chosen through solving Eq. (1) and Eq. (3) together by using the above-mentioned simulation parameters. The ridge number n was 4, and the depth of the grating d was 40nm, in this case, SPs could be highly excited. The detailed parameters are labeled in the Fig. 1. Here we take the values of w 1=600nm, w 2=160nm, h 1=60nm, and h 2=240nm.

The electric field distribution pattern in the case without grating is shown in Fig. 2(a), the SPs are only excited by the taper at the cut-off point, and finally the localized SPs are accumulated at the taper tip as mentioned above. By adding the gratings structure to the both sides of the taper bottom, the localized electric field and relevant localization energy can be modulated. We fix the taper structure, only changing the distance between the taper and the first ridge of the grating (labeled as l in Fig. 1). Figures 2(b)2(d) show the electric field distribution in the cases of l=0nm, l=70nm and l=140nm, respectively, in which additional excitation of SPs by the grating is clearly revealed. In Fig. 2(b), the amplitude of the localized electric field intensity is obviously enhanced compared with that in the case without grating, indicating a constructive interference of SPs which eventually leads to the more accumulation of localized energy at the tip. Also, when we choose l=70nm as shown in Fig. 2(c), the localized electric field intensity is still enhanced, but this increase has weakened. Lastly, when l=140nm, a destructive SPs interference has taken place, the localized electric field is attenuated by 13 times, and corresponding localized energy is reduced by 2 orders of magnitude compared with that in the case without grating.

The calculated near-field intensity profiles at Δh=30nm (30nm below the interface of mask and photoresist) are displayed in Fig. 4(e) to describe the interference modulation to the localized field. We notice that all the fields have one maximum centered on the symmetry axis of the taper (or X=0nm). When l=0nm, the line width defined as full-width at 0.7 maximum is only 100nm which is smaller than the tip width w 2=160nm, and this curve is the sharpest. It is expected that an acceptable pattern with high resolution and high contrast can be approached with this profile. When l=140nm, the magnitude of electric field is dramatically reduced due to the destructive interference of SPs, and yet, the line width is 154nm which is still smaller than the diffraction limit 218nm. It is suggested that this technique can break through diffraction limitation. For instance, the pattern with line width below 20nm has been numerically demonstrated [17

17. X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express. 15, 14177–14183 (2007). [CrossRef] [PubMed]

].

Further investigation focuses on the relationship of the maximum electric field intensity versus the vertical (along Z direction) distance as shown in Fig. 2(f). The localized fields decay exponentially into the photoresist, and the expression for the peak of electric field E m (h) as a function of vertical distance h can be given n by E m(h)∝exp(-h/h0). Here, the decay length h0 which influences the exposures depth in photoresist is defined as the vertical attenuation distance from the mask-photoresist interface to the location where the electric field decreases to e -1 of the interface value. Through simulation data, we have h0 labeled by arrow lines with different colors in Fig. 2(f) being approximately 86nm, 83nm, 84nm, and 108nm for the cases without grating, l=0nm, l=70nm, and l=140nm with grating, respectively.

Fig. 2. (a). Electric field intensity distribution pattern in the case without grating. Electric field intensity distribution pattern in the case of l=0nm (b), l=70nm (c) and l=140nm (d) with grating. (e) Electric field intensity profiles at Δh=30nm (30nm below the interface of mask and photoresist). (f) Magnitude of the electric field intensity at constant X=0nm versus the vertical distance Z.

Fig. 3. Relationship of localized energy versus the distance l. the red dash line with the value of 1 represents the energy value of a single taper structure without grating. Geometrical parameters are also w 1=600nm, w 2=160nm, h 1=60nm, h 2=240nm, p=280nm, n=4 and d=40nm.

3. Controllable nanolithography

In what follows, a LSPs nanolithography technique is proposed and demonstrated to produce patterns with different depths and feature widths in one chip based on the interference modulation of SPs. To prove it in a specific instance, a structure including four tapers with the same shape is simulated. The distances between the tapers and adjacent gratings are chosen as 0nm, 50nm, 100nm, and 150nm respectively along the positive direction of X axis, other geometrical parameters are the same as the preceding section. Figure 4(a) represents the electric field distribution, in which the localized energy of the four tapers is gradually weakened along positive X direction as expected.

Fig. 4. (a). Electric field intensity distribution with four tapers. (b) Near-field intensity profiles at Δh=30nm. (c) Peak of the electric field intensity versus the vertical distance from the interface of the mask and the photoresist.

As the photoresist is mostly sensitive to the electric field intensity, the feature size and the contrast of exposed patterns can be reflected by the electric field intensity profile, and the exposure depth is relevant to the attenuation of electric field. Next, we analyze the near-field intensity profiles of the four taper tips at Δh=30nm as shown in Fig. 4(b). The photoresist only records regions where the local electromagnetic field intensity is above the exposure threshold. It is therefore imaginable that the localized field of the four tapers will induce distinct patterns. Suppose the exposure threshold is 4 indicated as the purple solid line, only the intensities of taper 1 and taper 2 are high enough to react with the photoresist, and the corresponding feature widths are 84nm, 72nm, 0nm and 0nm, respectively. Furthermore, the pattern depths for exposure are 51nm, 41nm, 23nm and 0nm respectively, as revealed in Fig. 4(c) which represents the peak of electric field intensity versus vertical distance. Note that the electric field drops off gradually with increasing vertical distance from the mask-photoresist interface. When the threshold is 1 labeled as the purple dash line in Fig. 4(b), the line widths are 385nm, 356nm, 280nm and 94nm respectively, and the exposure depths will accordingly increase.

4. Conclusions

In conclusion, we have proposed a type of nanolithography technique which can be used to produce patterns with different depths and feature widths in one chip. Physical analysis and FDTD simulation calculation have demonstrated that the localized exposure energy could be modulated by controlling the interference of SPs originate from two distinct excitation sources. As an example, sub-wavelength patterns with different line widths and depths have been obtained in the simulation with 436nm exposing light by using one mask with four tapers. This technique provides an alternative method for nanodevices fabrication.

Acknowledgment

This work was supported by 973 Program of China (No.2006CB302900), 863 Program of China (2007AA03Z332) and the Chinese Nature Science Grant (60678035, 60727006). The authors thank Dr. Haofei Shi and Dr.Lifang Shi for their kind contributions to the work.

References and links

1.

M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. V. Peski, “157 nm: deepest deep-ultraviolet yet,” J. Vac. Sci. Technol. B17, 3262–3266 (1999).

2.

C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998). [CrossRef]

3.

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16, 3137–3141 (1998). [CrossRef]

4.

M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997). [CrossRef]

5.

J. Melngailis, “Focused ion beam lithography,” Nucl. Instrum. Methods Phys. Res. B 80, 1271–1280 (1993). [CrossRef]

6.

J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography”, J. Vac. Sci. Technol. B 17, 3306–3309 (1999). [CrossRef]

7.

M. Switkes and M. Rothschild, “Immersion lithography at 157 nm,” J. Vac. Sci. Technol. B 19, 2353–2356 (2001). [CrossRef]

8.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81, 1315–1317 (2002). [CrossRef]

9.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560–3562 (1999). [CrossRef]

10.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).

11.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]

12.

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express. 12, 3055–3065 (2004). [CrossRef] [PubMed]

13.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]

14.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]

15.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonic: surface plasmon polaritons and locallized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003). [CrossRef]

16.

V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]

17.

X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express. 15, 14177–14183 (2007). [CrossRef] [PubMed]

18.

J. A. Kong, Electromagnetic Wave Theory, 2nd edition (John Wiley & Sons, New York, 1990).

19.

A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy”, J. Microsc. 210, 220–224 (2003). [CrossRef] [PubMed]

20.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?,” Phys. Rev. Lett. 87, 167401–167404 (2001). [CrossRef] [PubMed]

21.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

22.

K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]

23.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]

OCIS Codes
(220.3740) Optical design and fabrication : Lithography
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: July 18, 2008
Revised Manuscript: August 14, 2008
Manuscript Accepted: August 15, 2008
Published: August 29, 2008

Citation
Xingzhan Wei, Chunlei Du, Xiaochun Dong, Xiangang Luo, Qiling Deng, and Yudong Zhang, "Nanofabrication with controllable localization energy based on the interference modulation of surface plasmons," Opt. Express 16, 14404-14410 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz, V. Liberman, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, and C. V. Peski, "157 nm: deepest deep-ultraviolet yet," J. Vac. Sci. Technol. B 17, 3262-3266 (1999).
  2. C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, "Extreme ultraviolet lithography," J. Vac. Sci. Technol. B 16, 3142-3149 (1998). [CrossRef]
  3. J. P. Silverman, "Challenges and progress in x-ray lithography," J. Vac. Sci. Technol. B 16, 3137-3141 (1998). [CrossRef]
  4. M. A. McCord, "Electron beam lithography for 0.13 ?m manufacturing," J. Vac. Sci. Technol. B 15, 2125-2129 (1997). [CrossRef]
  5. J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993). [CrossRef]
  6. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, "Liquid immersion deep-ultraviolet interferometric lithography", J. Vac. Sci. Technol. B 17, 3306-3309 (1999). [CrossRef]
  7. M. Switkes and M. Rothschild, "Immersion lithography at 157 nm," J. Vac. Sci. Technol. B 19, 2353-2356 (2001). [CrossRef]
  8. J. G. Goodberlet and H. Kavak, "Patterning sub-50 nm features with near-field embedded-amplitude masks," Appl. Phys. Lett. 81, 1315-1317 (2002). [CrossRef]
  9. M. M.  Alkaisi, R. J.  Blaikie, S. J.  McNab, R.  Cheung, and D. R. S.  Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett.  75, 3560-3562 (1999). [CrossRef]
  10. H.  Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics Vol. 111 (Springer-Verlag, Berlin, 1988).
  11. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  12. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004). [CrossRef] [PubMed]
  13. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004). [CrossRef]
  14. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  15. A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003). [CrossRef]
  16. Q1. V.  Zayats, I. I.  Smolyaninov, and A. A.  Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep.  408, 131-314 (2005). [CrossRef]
  17. X. Wei, X. Luo, X. Dong and C. Du, "Localized surface plasmon nanolithography with ultrahigh resolution," Opt. Express. 15, 14177-14183 (2007). [CrossRef] [PubMed]
  18. J. A. Kong, Electromagnetic Wave Theory, 2nd edition (John Wiley & Sons, New York, 1990).
  19. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy", J. Microsc. 210, 220-224 (2003). [CrossRef] [PubMed]
  20. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett. 87, 167401-167404 (2001). [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  22. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  23. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited