OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 19 — Sep. 15, 2008
  • pp: 14597–14602
« Show journal navigation

Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM)

Debin Cai, Yonghua Lu, Kaiqun Lin, Pei Wang, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 16, Issue 19, pp. 14597-14602 (2008)
http://dx.doi.org/10.1364/OE.16.014597


View Full Text Article

Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The sensitivity of surface plasmon resonance (SPR) sensors based on gratings using angular interrogation is improved by optimizing the 1st-order diffraction dip recently but still can not exceed the prism-based systems. To improve the sensitivity of grating-based systems in another way, we realize sharp dips of the higher diffraction orders and propose double-dips method (DDM), a new way using the separation of two sharp dips of different orders to improve the sensitivity of SPR sensors based on gratings with good linearity. By DDM, the grating-based systems’ sensitivity is improved into more than 237 deg/RIU, more sensitive than the prism-based systems in the same condition, and the quality parameter χ factor reaches more than 95. In different performance comparisons, DDM has roundly better performances than other methods. Moreover, when the grating profile errs from rectangle, DDM still works well.

© 2008 Optical Society of America

1. Introduction

Recently, many researches on the sensitivity of SPR sensors using angular interrogation are reported. The angular sensitivity of the SPR sensor based on prism is reported increasing from 94.46 deg/RIU to 204.41 deg/RIU, but it goes with an increase of FWHM from 2.24 to 4.36 deg [5

5. G. Gupta and J. Kondon, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381–388 (2007). [CrossRef]

]. The angular sensitivities of the grating-based systems are reported recently as 103 deg/RIU in a short-range mode method, 97 deg/RIU in a typical single-mode method [6

6. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33, 512–514 (2008). [CrossRef] [PubMed]

] and 70 deg/RIU in a metallic method [7

7. K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007). [CrossRef] [PubMed]

]. All the grating-based methods above are improving the sensitivity through making the dips of the 1st diffraction order better but can not exceed the sensitivity of the prism-based systems. As discussed in Homola’s paper [8

8. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

], in the 2nd diffraction order the grating-based system exhibits about the same sensitivity as that of the prism-based system. However, the dip of the 2nd order showed in Fig. 10(a) of [8

8. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

] is too shallow to practical use to realize the high sensitivity.

We notice that if turn the attention from the 1st diffraction order to the higher orders, it may be another effective way of the sensitivity improvement in the grating-based system. In this work, a unique grating is designed to produce not only the 1st-order dip but also a deep enough high-order dip that can be located. Based on these two dips, we propose double-dips method (DDM) to improve the sensitivity of grating-based SPR sensors. The principle of DDM will be explained; the performances of DDM will be analyzed and compared to some other SPR sensing methods.

2. Principle of double-dips method (DDM)

To make use of the higher-order dips in the grating-based system, it is necessary to produce a deep and sharp reflectance minimum. Our rigorous coupled-wave calculation reveals the high-order reflection dips can be manipulated by changing the topography of the gratings [9

9. K. Lin, D. Cai, Y. Lu, and H. Ming, Department of Physics, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China, are preparing a manuscript to be called “Producing sharp high-order dips by changing the grating shape.”

]. Based on our analysis, a rectangle grating structure showed in Fig. 1(a) is designed, whose structure parameters are showed below. The period of the gold grating (Λ) is 1300nm. The widths of the upper region of the grating (u1 and u2) are 800nm and the depth of the grating (d) is 35nm. The gold lay is thick enough, thus the substrate is regardless. The wavelength (λ) of the incident plane wave light is 850nm (1.459ev). We use the angular interrogation type and consider the refractive index (na) of the analyte ranging from 1.32 to 1.37 RIU (refractive index unit). The optical constants for gold used are n=0.17, k=5.30 [10

10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

, 11

11. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]

]. Based on the structure introduced above, a very sharp -4th-order dip with FWHM (full width of half maximum) of 2.5 deg can be produced. Figure 1(b) gives the reflection spectrum of the structure shown in Fig. 1(a) calculated by rigorous coupled-wave analysis theory (RCWA) [12

12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]

]. As the refractive index of the analyte varies from 1.32 to 1.37 RIU, the minimum position of the 1st-order dip shifts to the right and the -4th-order dip to the left. This results in the decrease of the separation between these two dips (w). Obviously, w changes more quickly than the 1st-order dip and the -4th-order dip with the change of refractive index of the analyte, hereby, a new method with higher sensitivity than the former ways can be designed based on this. This leads to double-dips method (DDM).

Fig. 1. (a). Schematic diagram of a grating based reflection type SPR sensor using angular interrogation. (b). Calculated reflectance spectra of rectangle-grating-based SPR sensors.

The reflectivity minimum in Fig. 1(b) can be understood from the surface plasmon resonance at the grating surface. Neglecting the perturbation on the dispersion properties of the surface plasmon wave by the grating relief, the resonant condition can be written out according to the momentum conservation for optical wave exciting surface plasmon wave via diffraction grating [8

8. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

]:

nasin(θR)+mλΛ=±εmna2εm+na2
(1)

where θR is the resonant angle (0 deg<θR<90 deg), m is an integer, εm is the dielectric constant of gold. Because the wave vector of surface plasmon is always greater than that of incident light, sign “+” on the right side of the equation corresponds to diffraction order m>0 and sign “-” corresponds to diffraction order m<0. From Eq. (1), the left sharp dip in Fig. 1(b), with FWHM of 1.07 deg, corresponds to the 1st diffraction order (m=1) and the right sharp dip, with FWHM of 2.5 deg, corresponds to the -4th order (m=-4).

Assuming εm≫n2 a, the resonant angle is calculated from Eq. (1) as following:

Sin(θR)=mλΛ1na±1
(2)

As refractive index of analyte (na) increases, resonant angle θR goes to bigger in the case of m>0 and becomes smaller in the case of m<0, which is identical with the rigorous coupled-wave calculation (Fig. 1(b)). When come to the sensitivity (S) using one dip, the following equation can be achieved from the derivation of Eq. (2):

S=dθRdna=mλΛ1na2Cos(θR)
(3)

It can be seen that the sensitivity is approximately proportional to diffraction order (|m|). The sensitivity using the higher order dip is larger than that using the lower order.

Double-dips method (DDM) is designed in such a way: based on the sharp dips of different diffraction orders produced by the system in Fig. 1(a), the change of w can be detected, which decreases with the increase of the refractive index of the analyte, and it can be turned to the parameter we want to measure such as refractive index of the analyte. Therefore, the sensitivity for DDM is defined as following:

SDDM=dwdna
(4)

In our designed grating structure (Fig. 1(a)), the 1st order and the -4th order dip are measured to sensing the refractive index of analyte, thus the sensitivity of our DDM grating SPR sensor is

SDDM=dwdnad(θ4θ1)dna=dθ4dna+dθ1dna
(5)

Where θ-4 is the incident angle where the -4th-order dip appears and θ1 is the incident angle where the 1st-order dip appears. From Eq. (5), it can be seen unambiguously that DDM can improve the sensitivity of the grating-based SPR sensors by several times compared to the 1st-order dip sensors. But the price we have to pay for this sensitivity enhancement is the additional uncertainty of estimating two spectral shifts instead of one in the normal methods based on single resonant dip. Approximately, the uncertainty of the sensing variable in DDM is doubled because the width of the resonant dip of different diffraction orders changes not too much. Considering the great sensitivity enhancement, this payment of uncertainty is valuable.

3. Characteristics of double-dips method (DDM)

In the following, we discuss the quantitative comparisons through simulations. The sensitivity comparison among different methods is showed in Fig. 2(a) and the χ factors, which are defined as χ=S/FWHM in [8

8. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

] and denote the overall performance of sensors, are compared in Fig. 2(b). Using the structure in Fig. 1(a), the results of DDM (including DDM14, which using the 1st-order and the -4th-order dip, and DDM24, which using the +2nd-order showed in Fig. 1(b) and the -4th-order dip), the conventional method just using the 1st-order dip (G 1st) and the method just using the -4th-order dip (G 4th) can be calculated. The results of BK7 glass prism-gold method at the wavelength of 850nm (Prism) in [8

8. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

] are compared with. To show the recent results reported in this area, several concerned results of different grating structures and prism structures reported in literature recently are also presented in Fig. 2(a) and Fig. 2(b), separated by blank from the former 5 which using the same structure parameters. They are the results of grating-based systems of a short-range mode method (Sb-SR) and a typical single-mode method (typical) reported in [6

6. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33, 512–514 (2008). [CrossRef] [PubMed]

], and a metallic method (metallic) reported in [7

7. K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007). [CrossRef] [PubMed]

], and the results of prism-based systems with different prism refractive index of 1.597 (N1), 1.514 (N2) and 1.456 (N3) reported in [5

5. G. Gupta and J. Kondon, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381–388 (2007). [CrossRef]

].

Fig. 2. (a). Sensitivity comparison among different methods. (b) χ factor comparison among different methods.

Figure 2(b) shows the comparison of the χ factor among different methods. To consider the worst condition, the wider FWHM of the two dips in DDM (FWHM of the -4th-order dip) is used in the calculation of the χ factor of DDM. However, this does not break the good performance of DDM. Obviously, the two highest bars are the two results of DDM. The prism-based method N3 with good sensitivity has a bad χ factor because of its wide FWHM. Considering both factors in Fig. 2, DDM has roundly better performance than others.

Figure 3 shows the linearity comparison among different methods based on the same structure in Fig. 1(a). It can be seen that all four grating-based method have good linearity with good values of correlation coefficient (R).

Fig. 3. Linearity comparison among different methods. The lines of G 1st and G 4th are the incident angles where the dips appear as functions of the refractive index of analyte, and the lines of DDM14 and DDM24 are w as functions of the refractive index of analyte.
Fig. 4. Calculated reflectance spectra of trapezia-grating-based SPR sensors.

At last, the grating profile is changed into trapezia by setting u1 into 760nm while other parameters remain the same as Fig. 1(a), and the reflectance spectra of this trapezia-grating-based SPR sensor is showed in Fig. 4. In Fig. 4, there are sharp dips of different orders nearly the same as the rectangle-grating-based system (Fig. 1(b)). From Fig. 5(a), it can be seen that after changing the grating profile into trapezia, the sensitivities are equal to the rectangle grating system. After using the 1st-order and -4th-order dip to realize DDM in this trapezia grating system, the sensitivity (DDM14) is improved into 240 deg/RIU, 7.6 times as the sensitivity gotten by just using the 1st-order dip in this system, and the linearity (R=0.9983) is good. If use the +2nd-order and -4th-order dip in this trapezia system, the DDM sensitivity (DDM24) is 255 deg/RIU, 8 times as the 1st-order way and the R value is 0.9985. Figure 5(b) shows the χ factor comparison. The trapezia grating system has a better performance in this aspect because of its narrower FWHM (the FWHM of the -4th order dip is 1.85 deg and the 1st order’s is 0.84 deg). When the grating profile errs from rectangle, DDM still works well and the analysis about its characters above remains.

Fig. 5. (a). Sensitivity comparison between rectangle grating and trapezia grating based SPR sensors among different methods. (b). χ factor comparison between rectangle grating and trapezia grating based SPR sensors among different methods.

4. Conclusion

In this work, sharp dips of higher diffraction orders are realized at first in the grating-based SPR sensor with angular interrogation. Moreover, we propose double-dips method (DDM) to further improve the sensitivity of the grating-based system greatly into more than 237 deg/RIU with good linearity and good χ factors of more than 95, better than the prism-based system in the same condition, and prove the roundly better performance of DDM than other methods through several character comparisons. At last, DDM remains its good performance in the gratings with profiles erring from rectangle. In the future work, we will do more research on the higher diffraction orders and try to make more use of them.

Acknowledgments

This research was supported by the National Key Basic Research Program of China 2006CB302905, the Key Program of National Natural Science Foundation of China 60736037, the National Natural Science Foundation of China No.10704070 and the Science and Technological Fund of Anhui Province for Outstanding Youth.

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]

2.

C. Genet and T.W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]

3.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2, 120–123 (2006). [CrossRef]

4.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]

5.

G. Gupta and J. Kondon, “Tuning and sensitivity enhancement of surface plasmon resonance sensor,” Sens. Actuators B 122, 381–388 (2007). [CrossRef]

6.

J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogation,” Opt. Lett. 33, 512–514 (2008). [CrossRef] [PubMed]

7.

K. M. Byun, S. J. Kim, and D. Kim, “Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings,” Appl. Opt. 46, 5703–5708 (2007). [CrossRef] [PubMed]

8.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B 54, 16–24 (1999). [CrossRef]

9.

K. Lin, D. Cai, Y. Lu, and H. Ming, Department of Physics, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China, are preparing a manuscript to be called “Producing sharp high-order dips by changing the grating shape.”

10.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

11.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]

12.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]

13.

K. H. Yoon and M. L. Shuler, “Design optimization of nano-grating surface plasmon resonance sensors,” Opt. Express 14, 4842–4849 (2006). [CrossRef] [PubMed]

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 3, 2008
Revised Manuscript: August 15, 2008
Manuscript Accepted: August 15, 2008
Published: September 2, 2008

Citation
Debin Cai, Yonghua Lu, Kaiqun Lin, Pei Wang, and Hai Ming, "Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM)," Opt. Express 16, 14597-14602 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14597


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003). [CrossRef] [PubMed]
  2. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  3. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120-123 (2006). [CrossRef]
  4. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  5. G. Gupta and J. Kondon, "Tuning and sensitivity enhancement of surface plasmon resonance sensor," Sens. Actuators B 122, 381-388 (2007). [CrossRef]
  6. J. Guo, P. D. Keathley, and J. T. Hastings, "Dual-mode surface-plasmon-resonance sensors using angular interrogation," Opt. Lett. 33, 512-514 (2008). [CrossRef] [PubMed]
  7. K. M. Byun, S. J. Kim, and D. Kim, "Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings," Appl. Opt. 46, 5703-5708 (2007). [CrossRef] [PubMed]
  8. J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999). [CrossRef]
  9. K. Lin, D. Cai, Y. Lu, H. Ming, Department of Physics, Anhui Key Laboratory of Optoelectronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China, are preparing a manuscript to be called "Producing sharp high-order dips by changing the grating shape."
  10. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  11. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  12. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  13. K. H. Yoon and M. L. Shuler, "Design optimization of nano-grating surface plasmon resonance sensors," Opt. Express 14, 4842-4849 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited