OSA's Digital Library

Optics Express

Optics Express

  • Editor: Martijn de Sterke
  • Vol. 16, Iss. 20 — Sep. 29, 2008
  • pp: 15415–15424
« Show journal navigation

Double phase conjugate mirror using Sn2P2S6 for injection locking of a laser diode bar

Tobias Bach, Mark Fretz, Mojca Jazbinšek, and Peter Günter  »View Author Affiliations


Optics Express, Vol. 16, Issue 20, pp. 15415-15424 (2008)
http://dx.doi.org/10.1364/OE.16.015415


View Full Text Article

Acrobat PDF (611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate double phase-conjugation in pure and Tedoped Sn2P2S6, a semiconducting ferroelectric material, at the wavelength of 685 nm. We observe a phase conjugate reflectivity of more than 800% at an intensity ratio of the pump beams of 44 for Te-doped Sn 2P2S6. Using a laser diode bar emitting at 685 nm, we demonstrate double phase conjugation of three independent emitters of the laser diode bar with a single mode master laser. By adjusting the center wavelength of the master laser to the center wavelength of an emitter with an accuracy of less than 0.1 nm, locking of any emitter of the laser diode bar is demonstrated. We improve the spectral width of the emitter from 0.5nm to below 2.5·10-4 nm.

© 2008 Optical Society of America

1. Introduction

The photorefractive (PR) double phase-conjugate mirror (DPCM) is based on a four-wave mixing geometry first demonstrated by Weiss et. al [1

1. S. Weiss, S. Sternklar, and B. Fischer, “Double phase-conjugate mirror - Analysis, demonstration, and applications,” Opt. Lett. 12, 114–116 (1987). [CrossRef] [PubMed]

]. Its capability of coupling two independent (mutually incoherent) laser sources makes it of unique interest for optical applications. DPCM was realized in many different geometries, which can be categorized by the number of internal reflections the beams experience in the crystal: zero reflections (double phase conjugation and modified bridge) [1

1. S. Weiss, S. Sternklar, and B. Fischer, “Double phase-conjugate mirror - Analysis, demonstration, and applications,” Opt. Lett. 12, 114–116 (1987). [CrossRef] [PubMed]

, 2

2. D. Wang, Z. Zhang, Y. Zhu, S. Zhang, and P. Ye, “Observations on the coupling channel of two mutually incoherent beams without internal reflections in BaTiO3,” Opt. Commun. 73, 495–500 (1989). [CrossRef]

], one reflection (bird-wing) [3

3. M. D. Ewbank, “Mechanism for photorefractive phase conjugation using incoherent beams,” Opt. Lett . 13, 47–49 (1988). [CrossRef] [PubMed]

], two reflections (mutually incoherent beam coupling, MIPC) [4

4. R. W. Eason and A. M. C. Smout, “Bistability and noncommutative behavior of multiple-beam self-pulsing and self-pumping in BaTiO3,” Opt. Lett. 12, 51–53 (1987). [CrossRef] [PubMed]

] and three reflections (frog-legs) [5

5. M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and J. Feinberg, “Mutually pumped phase conjugation in photorefractive strontium barium niobate: theory and experiment,” J. Opt. Soc. Am. B 7, 2306–2316 (1990).

]. The mostly implemented material of choice in these configurations is ferroelectric BaTiO 3, because it shows the highest phase conjugate reflectivity compared to ferroelectric LiNbO 3 and KNbO3 [6

6. C. Medrano, M. Zgonik, S. Berents, P. Bernasconi, and P. Günter, “Self-pumped and incoherent phase conjugation in Fe-doped KNbO3,” J. Opt. Soc. Am. B 11, 1718–1726 (1994).

], sillenite-type crystals [7

7. M. P. Petrov, S. L. Sochava, and S. I. Stepanov, “Double phase conjugate mirror using a photorefractive Bi12TiO20 crystal,” Opt. Lett. 14, 284–286 (1989). [CrossRef] [PubMed]

] and semiconductors [8

8. K. Shcherbin, “Recent Progress in Semiconductor Photorefractive Crystals,” in Photorefractive Materials and Their Applications II, P. Günter and J.-P. Hiugnard, eds. (Springer-Verlag, New York,2007), pp. 391–418.

] where DPCM was also investigated. With BaTiO3 a maximal double phase conjugate reflectivity of more than 600% at a wavelength of ~800nm was measured [9

9. G. W. Ross and R. W. Eason, “Double phase-conjugate mirror with sixfold gain in photorefractive BaTiO3 at near-infrared wavelengths,” Opt. Lett. 18, 571–573 (1993). [CrossRef] [PubMed]

]. However, BaTiO3 shows a very slow grating build-up time particularly for infrared wavelengths and in addition suffers from domain formation caused by infrared light [10

10. R. S. Cudney and M. Kaczmarek, “Optical poling in Rh:BaTiO3,” in Trends in Optics and Photonics, Vol. 62, pp. 485–489 (2001).

]. Also the tetragonal-orthorombic phase transition is very close to room temperature at ~9°C [11

11. M. B. Klein, “Photorefractive Properties of BaTiO3,” in Photorefractive materials and their applications I, P. Günter and J.-P. Hiugnard, eds. (Springer Verlag, Berlin, 1988), pp. 195–236.

], therefore a new material is preferable for real-life applications using a DPCM.

The performance parameters of a double phase conjugate mirror can be described theoretically by the plane-wave solutions of coupled-wave equations with large coupling (pump depletion) [12

12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

14

14. D. Engin, M. Segev, S. Orlov, and A. Yariv, “Double phase conjugation,” J. Opt. Soc. Am.B 11, 1708–1717 (1994).

]. In this model absorption losses are neglected. By considering the absorption, the optical energy is not conserved in the crystal and the coupled-wave equations cannot be integrated directly. Numerical calculations give solutions for the reflectivity of the double phase conjugate mirror with large coupling including absorption losses [15

15. N. Wolffer, P. Gravey, J. Y. Moisan, C. Laulan, and J. C. Launay, “Analysis of double phase conjugate mirror interaction in absorbing photorefractive crystals: application to BGO:Cu,” Opt. Commun. 73, 351–356 (1989). [CrossRef]

].

To achieve spectral laser beam clean-up, a powerful semiconductor laser of a broad spectrum (slave laser) can be locked with the help of a DPCM to a low power laser of a narrow spectrum (master laser). After locking the slave laser oscillates at the same frequency as the master laser and has similar (improved) spectral properties. This was successfully demonstrated, e.g. by MacCormack et. al, for a laser diode array coupled to a single-mode laser diode [16

16. S. MacCormack, J. Feinberg, and M. H. Garret, “Injection locking a laser-diode array with a phase conjugate beam,” Opt. Lett. 19, 120–122 (1994). [CrossRef] [PubMed]

]. To increase the output power, Iida et al. [17

17. K. Iida, H. Horiuchi, O. Matoba, T. Omatsu, T. Shimura, and K. Kuroda, “Injection locking of a broad-area diode lasers through a double phase conjugate mirror,” Opt. Commun. 146, 6–10 (1998). [CrossRef]

] showed injection locking of a high-power broad-area diode laser to a single-mode master laser and Wang et al. [18

18. F. Wang, A. Hermerschmidt, and H. J. Eichler, “High-power narrowed-beandwidth output of a broad-area multiple-stripe diode laser with photorefractive phase-conjugated injection,” Opt. Commun. 209, 391–395 (2002). [CrossRef]

] the coupling of a broad-area multiple-stripe diode laser. To our knowledge, spectral laser beam clean-up using a DPCM has not yet been investigated with a laser diode bar.

In this paper we demonstrate for the first time double phase conjugation in tin thiodiphos-phate (Sn2P2S6) and double phase conjugation of several emitters of a laser diode bar with a single-mode master laser. Sn2P2S6 is a relatively new photorefractive ferroelectric crystal [19

19. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II,P. Günter and J.-P. Huignard, eds. (Springer-Verlag, New York, 2007), pp. 327–362.

] with a very high electro-optic figure of merit n 3 r=(4800 ± 300)pm/V at 633 nm, extremely fast photorefractive response in the red and infrared [20

20. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752–754 (1996). [CrossRef] [PubMed]

22

22. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005). [CrossRef]

] compared to other ferroelectric crystals and is even sensitive at telecommunication wavelength 1.55µm [23

23. R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 µm in Sn2 P2S6:Te,” Opt. Lett. 32, 3230–3232 (2007). [CrossRef] [PubMed]

]. Self-pumped optical phase conjugation was demonstrated up to a wavelength of 1.06µm with Te-doped Sn2P2S6 with the reflectivity of more than 40% and rise time below 100ms at 20 W/cm2 light intensity [24

24. T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 µm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005). [CrossRef] [PubMed]

], which is two orders of magnitude faster compared to Rh-doped BaTiO 3. Here we present results of phase conjugate reflectivities of more than 800% at the wavelength of 685 nm, to our knowledge the highest reported reflectivity for double phase conjugate mirrors. Experimental results of the variation of the intensity ratio of the incoming beams, as well as the variation of the total intensity, are compared with a modified model of the plane wave solutions of coupled wave equations. We also demonstrate the spectral beam clean-up of one emitter of a laser diode bar with a single mode laser diode at 685 nm. Simultaneous phase conjugation of three emitters of the laser diode bar with the seeder laser is demonstrated at 685 nm. By adjusting the wavelength of the seeder laser to the wavelength of one of the three emitters of the laser diode bar with a precision of < 0.1nm, each emitter can be locked and spectrally cleaned.

2. Experiment

In our experimental configurations with double phase conjugated mirrors we used nominally pure or Te-doped Sn2P2S6 crystals as the photorefractive phase-conjugate couplers. Nominally pure crystals are of yellow color and crystals doped with Te are of light brown color due to the shift of the absorption edge in Te-doped crystals [25

25. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535–1541 (2007).

].

At room temperature Sn2P2S6 has a ferroelectric monoclinic structure with point group symmetry m [19

19. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II,P. Günter and J.-P. Huignard, eds. (Springer-Verlag, New York, 2007), pp. 327–362.

]. We use a coordinate system with the z-axis parallel to the crystallographic c-axis, the y-axis normal to the mirror plane and the x-axis (which is close to the axis of the spontaneous polarization) normal to y and z [19

19. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II,P. Günter and J.-P. Huignard, eds. (Springer-Verlag, New York, 2007), pp. 327–362.

]. The samples were oriented by X-rays, cut along the x, y and z axes and polished normal to the z-axis. Crystals were poled by applying an electric field of about 500 V/cm along the x-axis above the phase transition temperature Tc=337K and then slowly cooled down to room temperature with the applied electric field on. The maximal photorefractive gain Γ for nominally pure crystals is Γ=7cm-1 at a wavelength of 633nm and Γ=2.5cm-1 at 780nm [22

22. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005). [CrossRef]

]. The corresponding grating recording times τ at an intensity of 10 W/cm2 are τ=5ms and τ=10ms at the wavelengths 633nm and 780 nm, respectively. For Te-doped Sn2P2S6 these values are: Γ=10cm-1 and τ=0.1ms at 633nm and Γ=6cm-1 and τ=0.2ms at 780nm [25

25. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535–1541 (2007).

].

2.1. Optimized double phase conjugation

To characterize the double phase conjugate mirror we chose a set-up with a Te-doped Sn 2P2S6 crystal with dimensions x×y×z=10mm×6mm×7.44mm (Fig. 1). As master laser we used a laser diode (wavelength λ=685nm) stabilized with a diffraction grating (line density of 2200mm-1) as external cavity to achieve single mode operation (Toptica Photonics). The maximal output power was 57mWat a driving current of 132 mA. The laser diode was optically isolated to prevent that the phase conjugated beams disturb the laser. The beam was split by a beam splitter and the two beams entered a Te-doped Sn2P2S6 crystal from the z-plane in opposite directions, where they overlapped so that a phase conjugate grating was recorded. To reduce the Fresnel losses, the crystal was coated with a 190nm thick Al2O3 layer. The external angles were adjusted to θ 1=20° and θ 3=60° with respect to the sample normal and led to single reflection losses at the crystal surfaces of approximately R 0=6% and RL=7%, for beams entering the crystal at z=0 and z=L, respectively. The angle difference θ 3-θ 1=40° corresponds to the maximum measured two-wave mixing gain Γ=10cm -1 at Λ=1.0µm[25

25. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535–1541 (2007).

]. An additional glass plate was placed into the path of beam A 1 after the beam splitter to be able to measure the phase conjugate (signal) beam 4. The maximal intensities of beam A 1 and beam A 3 at the position of the crystal were I 10=0.18W/cm2 and I 3L=0.17W/cm2, respectively. To change the intensity ratio q=I 3L/I10, neutral density (ND) filters were placed in the beam path of beam A 1 for higher ratios and in the path of beam A 3 for smaller ratios. To avoid reflection gratings in the crystal a piezoelectric transducer was used to vibrate one mirror in the path of beam A 1, making the two input beams incoherent. No additional cylindrical lenses were needed to avoid conical diffraction [7

7. M. P. Petrov, S. L. Sochava, and S. I. Stepanov, “Double phase conjugate mirror using a photorefractive Bi12TiO20 crystal,” Opt. Lett. 14, 284–286 (1989). [CrossRef] [PubMed]

], because the beam profile out of the laser diode is of elliptical shape and therefore the profile of beam A 1 and beam A 3 as well.

Fig. 1. Experimental set-up for double phase conjugation characterization with a Te-doped Sn2P2S6 crystal at 685 nm. The phase conjugated beam A 4 is partly reflected by a glass plate and measured by a photodiode. The intensity ratio can be changed by putting filters in the path of beam A 1 or A 3. The beams are linearly polarized in the plane of incidence.

2.2. Double phase conjugation of multiple beams and locking of one emitter

A cylindrical lens L1 (with focal length f 1=250mm) was slightly focusing the beam of the slave laser onto the crystal. The cylindrical lenses L2 and L3 (f 2=60mmand f 3=40mm) were placed in front of the crystal to focus the beams vertically and to prevent conical diffraction in the double phase conjugating process (see e.g. [7

7. M. P. Petrov, S. L. Sochava, and S. I. Stepanov, “Double phase conjugate mirror using a photorefractive Bi12TiO20 crystal,” Opt. Lett. 14, 284–286 (1989). [CrossRef] [PubMed]

]). The angles θ 1 and θ 2 could be adjusted to arbitrary values by rotating the Sn2P2S6 crystal and changing the beam path of the slave laser with two mirrors.

Fig. 2. Experimental set-up for phase conjugate injection locking with laser diodes at around 685 nm and Sn2P2S6 crystal. The laser beams are linearly polarized in the plane of incidence.

3. Result and discussion

3.1. Phase conjugation for different intensity ratios

Figure 3 shows experimental time evolution of the phase conjugate reflectivity R after turning on the two beams 1 and 3 at time t=0s for a Te-doped Sn2P2S6 crystal. The rise time defined as τ 90%τ 10% is approximately 7 s for a total intensity of I 0=I 10+I 3L=0.15W/cm2 in the crystal, considering also the Fresnel losses at the crystal surfaces. By recalculating the rise time to an intensity of 20W/cm2 we get τ 90%-τ 10% ≈50ms, the same order of magnitude compared to the rise time of self-pumped phase conjugation at 1.06µm in the same Te-doped Sn 2P2S6 crystal [24

24. T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 µm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005). [CrossRef] [PubMed]

]. We recorded the phase conjugated beam for 450 s to check the long-term stability of the generated signals.

Fig. 3. Long-term measurement of the phase-conjugate reflectivity of beam 4 for an intensity ratio q=I 10/I 3L=0.9 of the pump beams. The phase conjugate beam 4 is measured for 450 s to check the stability of the double phase conjugate mirror.

For the theoretical description of our experiment we use the plane-wave description and the coupled wave equations for the case of large coupling (depleted pump) and negligible absorption [12

12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

, 13

13. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984). [CrossRef]

]. The boundary conditions for our double phase conjugate mirror are A 2(0)=A 4(L)=0, where Ai(z) is the electric field amplitude of the ith wave at position z along the propagation; we define z=0 is at the crystal boundary on the side where we measure the phase conjugate reflectivity and z=L is on the side of the pump beam. The total light intensity is equal to I 0=|A 1|2+|A 2|2+|A 3|2+|A 4|2=|A 1(0)|2+|A 3(L)|2=I 10+I 3L and is independent of z if absorption is neglected. The four coupled-wave equations can be integrated to obtain the solution in the form [12

12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

, 13

13. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984). [CrossRef]

]

s=I0tanh(κL),
(1)

where

s=σ2+ρ02(I0+σ)2,
(2)
σ=I01q1+q,
(3)
κ=sΓ*4I0.
(4)

In Eq. (2), |ρ 0|2 is the phase-conjugate reflectivity on one side of the crystal (at the position z=0) defined as:

ρ02=A4(0)A1*(0)2.
(5)

By inserting Eqs. (2)(4) into Eq. (1) one obtains the transcendental equation for the reflectivity |ρ 0|2, which depends on the coupling constant ΓL and the intensity ratio q=I 3L/I 10 but not on the total intensity I 0. The measured reflectivity is equal to R=|ρ 0|2|t 0|4, where t 0 accounts for the changes in amplitudes and phases of interacting beams after being transmitted through the sample surface at z=0. The single reflection loss at z=0 in our experiment was R 0=6%, leading to |t 0|4=(1-R 0)2≈0.88.

Figure 4 shows experimental data (points) of the saturated (maximal) phase conjugate reflectivity for different intensity ratios q=I 3L/I 10. The highest phase conjugate reflectivity of more than 800% was achieved for an intensity ratio q=I 3L/I 10≈44. For higher intensity ratios the double phase conjugation breaks down, since we reach the threshold coupling constant (ΓL), which is a function of the intensity ratio q [12

12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

].

Fig. 4. Saturated phase conjugated reflectivity R as a function of the intensity ratio q=I 10/I 3L. Measured data (points) is compared with calculations. Dotted/dashed curves are based on Eq. (1) for the gain coefficients Γ=10cm-1, Γ=10.5cm-1 and Γ=11.5cm-1. The solid line includes a correction term ξ for the intensity ratio q due the absorption loss in the crystal (see Eq. (6)).

Figure 4 also shows the curves calculated using Eq. (1) for varying the gain coefficient within the error from the two-wave mixing experiments: Γ=10.0cm-1, Γ=10.5cm-1 and Γ=11.5cm-1, corresponding to coupling constants of ΓL=7.4, ΓL=7.8 and ΓL=8.6, respectively. The calculation shows best agreement with the measurement for a coupling constant of ΓL=7.8 regarding the absolute value of the measured double phase conjugate reflectivity R. However, the calculations based on Eq. (1) still have a discrepancy in the intensity ratio q compared with the measurements. Since in our crystal the absorption constant is α≈1.0cm-1 at the wavelength 685 nm, the absorption is not negligible and therefore the optical energy is not conserved in the crystal and the coupled-wave equations cannot be integrated directly. Numerical calculations for the diffraction efficiency in a double phase conjugate mirror [15

15. N. Wolffer, P. Gravey, J. Y. Moisan, C. Laulan, and J. C. Launay, “Analysis of double phase conjugate mirror interaction in absorbing photorefractive crystals: application to BGO:Cu,” Opt. Commun. 73, 351–356 (1989). [CrossRef]

], however, have shown that for coupling strength of ΓL=7.8 and for a ratio of Γ/2α≈5 the discrepancy between considering the absorption and neglecting it is below 10%. Nevertheless, this simplification is not true for the intensity ratio q. The reduction r of the intensity over the whole crystal length L=0.744cm is in our Sn2P2S6 crystal r=e -αL≈0.5. Therefore, the intensity ratio at the position z=0 is q 0=(rI 3L)/I 10≈0.5q and at the position z=L is qL=I 3L/(rI 10)≈2q. This means that over the propagation length in the crystal from z=0 to z=L we get a variation of the intensity ratio from 0.5q to 2q. We consider the part close to z=0 to be the dominant part in the double phase conjugate process, because the threshold coupling constant ΓL is a function of the intensity ratio q and increases for increasing q [12

12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

]. Therefore we introduce in Eq. (3) a correction term ξ

σ=I01qξ1+qξ
(6)

and in first approximation we choose ξ so that the intensity ratio q equals the intensity ratio at the position z=0. This leads to ξ=e -αL≈0.5.

A calculation for the phase conjugate reflectivity R based on Eq. (1), considering also the correction term ξ≈0.5 and for a coupling strength of ΓL=7.8, is shown in Fig. 4 (solid curve) and is in very good agreement with the measurement.

The solution of the coupled-wave equations for the double phase conjugate mirror does not involve any intensity dependence of the saturated reflectivity on the input beam intensity I 0. As also observed in a self-pumped ring-cavity phase conjugator, one has to modify the model and take into account the dark conductivity of the crystal [21

21. M. Jazbinsek, G Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Fast nearinfrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B 20, 1241–1246 (2003).

, 24

24. T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 µm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005). [CrossRef] [PubMed]

]. The dark conductivity is in competition with the photoconductivity leading to an intensity dependence of the photorefractive gain. Inclusion of the dark conductivity is usually done by introducing an additional parameter Iβ called background uniform illumination. To check the validity of our model for the double phase conjugate mirror we measured the phase conjugate reflectivity for reduced input beam intensities for an intensity ratio of q=0.91. The results are shown Fig. 5. The saturated reflectivity increases for lower intensities and then saturates for higher intensities. This means that for lower intensities we also have to take into account the background uniform illumination I β into the model for the double phase conjugate mirror, which will change the parameter κ in Eq. (4) to

κ=sΓ*4(I0+Iβ).
(7)

The dotted/dashed curves in Fig. 5 represent the intensity dependence for different effective background illuminations I β=0.0036 W/cm2, I β=0.018W/cm2 and I β=0.072W/cm2. The solid curve in Fig. 5 represents a calculation including the correction factor ξ for the intensity ratio for a background illumination of I β=0.0144W/cm2, which is of the same order of magnitude as observed for yellow and brown crystals at 633nm for a ring-cavity self-pumped phase conjugate mirror [22

22. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005). [CrossRef]

].

Fig. 5. Saturated phase conjugate reflectivity R as a function of the total intensity I 0. Dotted/ dashed curves represent calculations based on Eq. (1) considering the background illumination I β leading to a modified parameter ρ according to Eq. (7). The solid curve additionally considers the absorption loss in the crystal in the correction parameter ξ, as described by Eq. (6).

3.2. Double phase conjugation of multiple beams and locking of one emitter

For coupling the laser diode bar with a single mode laser diode we used pure Sn 2P2S6 in the double phase conjugate mirror. The experimental set-up is illustrated in Fig. 2 and described in the experimental part.

In the first experiment we used only one emitter of the laser diode bar. At a driving current of 4A, the power of each emitter was ≈50mW. The single-mode master laser was operating with 30mW at a wavelength of (684.1±0.1)nm. For the yellow Sn 2P2S6 crystal the angles of incidence for the beams to the crystal were θ 1=25° and θ 2=50°. The difference angle θ 2-θ 1=25° corresponds to the highest measured two-wave mixing gain Γ at the grating spacing Λ=1.5µm [26

26. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001). [CrossRef]

]. For this configuration we could observe the locking of the laser diode bar to the single-mode master laser. This means that the phase conjugated beam of the slave laser beam from the laser diode bar was redirected into the active area of the diode bar. This phase conjugated beam had the spectral properties of the single-mode master laser. In the active area of the laser diode bar the mode of the phase conjugated beam was amplified and the other modes were suppressed. A comparison between the spectrum of a free running and a locked emitter of the laser diode bar can be seen in Fig. 6. For measurement of the spectra a photo-spectrometer (Andus) was used. The free running emitter of the laser diode oscillated at a center wavelength of (684.2±0.1)nm with a spectral width of Δλ≈0.5nm. After locking, the center wavelength was at (684.1±0.1)nm, just like the single-mode master laser, as expected. From the measurement with the spectrometer we obtained a spectral width of Δλ≈0.073nm, which presents the resolution limit of our spectrometer. Measurements with a Fabry-Perot interferometer led to a spectral width for the locked emitter of the laser diode bar of Δλ < 2.5·10-4nm.

Fig. 6. Comparison of the free running mode and the locked mode spectrum of the slave laser output measured with a spectrometer. One diode of the laser bar is coupled with the master laser (IM=0.20W/cm2) and the intensity of the slave laser beam before entering the crystal is IS=0.36W/cm2.

Fig. 7. Double phase conjugated image observed on the screen of three independent emitters of a laser diode bar.

4. Conclusion

We demonstrated for the first time to the very best of our knowledge simultaneous double phase conjugation in the photorefractive ferroelectric material Sn 2P2S6 (in nominally pure and in Te-doped Sn2P2S6) at the wavelength 685 nm. Double phase conjugate reflectivity of more than 800 percent was measured for an intensity ratio of the input pump beams of q≈44. The measurement of the variation of the input beam ratio q, as well as the variation of the total intensity could be well explained by a modified model of the coupled-wave theory.

Using a laser diode bar at 685nm we demonstrated double phase conjugation of three independent laser sources (emitters of the laser diode bar) with a single mode master laser. By adjusting the center wavelength of the master laser to the center wavelength of an emitter with an accuracy of less than 0.1 nm, locking of any emitter of the laser diode bar was possible. We improved the spectral width for the emitter from 0.5nm to below 2.5·10-4 nm.

Acknowledgments

We thank A. A. Grabar and Y. M. Vysochanskii for supplying the crystals, J. Hajfler for polishing the crystals and the Swiss National Foundation for the financial support.

References and links

1.

S. Weiss, S. Sternklar, and B. Fischer, “Double phase-conjugate mirror - Analysis, demonstration, and applications,” Opt. Lett. 12, 114–116 (1987). [CrossRef] [PubMed]

2.

D. Wang, Z. Zhang, Y. Zhu, S. Zhang, and P. Ye, “Observations on the coupling channel of two mutually incoherent beams without internal reflections in BaTiO3,” Opt. Commun. 73, 495–500 (1989). [CrossRef]

3.

M. D. Ewbank, “Mechanism for photorefractive phase conjugation using incoherent beams,” Opt. Lett . 13, 47–49 (1988). [CrossRef] [PubMed]

4.

R. W. Eason and A. M. C. Smout, “Bistability and noncommutative behavior of multiple-beam self-pulsing and self-pumping in BaTiO3,” Opt. Lett. 12, 51–53 (1987). [CrossRef] [PubMed]

5.

M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and J. Feinberg, “Mutually pumped phase conjugation in photorefractive strontium barium niobate: theory and experiment,” J. Opt. Soc. Am. B 7, 2306–2316 (1990).

6.

C. Medrano, M. Zgonik, S. Berents, P. Bernasconi, and P. Günter, “Self-pumped and incoherent phase conjugation in Fe-doped KNbO3,” J. Opt. Soc. Am. B 11, 1718–1726 (1994).

7.

M. P. Petrov, S. L. Sochava, and S. I. Stepanov, “Double phase conjugate mirror using a photorefractive Bi12TiO20 crystal,” Opt. Lett. 14, 284–286 (1989). [CrossRef] [PubMed]

8.

K. Shcherbin, “Recent Progress in Semiconductor Photorefractive Crystals,” in Photorefractive Materials and Their Applications II, P. Günter and J.-P. Hiugnard, eds. (Springer-Verlag, New York,2007), pp. 391–418.

9.

G. W. Ross and R. W. Eason, “Double phase-conjugate mirror with sixfold gain in photorefractive BaTiO3 at near-infrared wavelengths,” Opt. Lett. 18, 571–573 (1993). [CrossRef] [PubMed]

10.

R. S. Cudney and M. Kaczmarek, “Optical poling in Rh:BaTiO3,” in Trends in Optics and Photonics, Vol. 62, pp. 485–489 (2001).

11.

M. B. Klein, “Photorefractive Properties of BaTiO3,” in Photorefractive materials and their applications I, P. Günter and J.-P. Hiugnard, eds. (Springer Verlag, Berlin, 1988), pp. 195–236.

12.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).

13.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984). [CrossRef]

14.

D. Engin, M. Segev, S. Orlov, and A. Yariv, “Double phase conjugation,” J. Opt. Soc. Am.B 11, 1708–1717 (1994).

15.

N. Wolffer, P. Gravey, J. Y. Moisan, C. Laulan, and J. C. Launay, “Analysis of double phase conjugate mirror interaction in absorbing photorefractive crystals: application to BGO:Cu,” Opt. Commun. 73, 351–356 (1989). [CrossRef]

16.

S. MacCormack, J. Feinberg, and M. H. Garret, “Injection locking a laser-diode array with a phase conjugate beam,” Opt. Lett. 19, 120–122 (1994). [CrossRef] [PubMed]

17.

K. Iida, H. Horiuchi, O. Matoba, T. Omatsu, T. Shimura, and K. Kuroda, “Injection locking of a broad-area diode lasers through a double phase conjugate mirror,” Opt. Commun. 146, 6–10 (1998). [CrossRef]

18.

F. Wang, A. Hermerschmidt, and H. J. Eichler, “High-power narrowed-beandwidth output of a broad-area multiple-stripe diode laser with photorefractive phase-conjugated injection,” Opt. Commun. 209, 391–395 (2002). [CrossRef]

19.

A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II,P. Günter and J.-P. Huignard, eds. (Springer-Verlag, New York, 2007), pp. 327–362.

20.

S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, “Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared,” Opt. Lett. 21, 752–754 (1996). [CrossRef] [PubMed]

21.

M. Jazbinsek, G Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Fast nearinfrared self-pumped phase conjugation with photorefractive Sn2P2S6,” J. Opt. Soc. Am. B 20, 1241–1246 (2003).

22.

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005). [CrossRef]

23.

R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 µm in Sn2 P2S6:Te,” Opt. Lett. 32, 3230–3232 (2007). [CrossRef] [PubMed]

24.

T. Bach, M. Jazbinsek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Self pumped optical phase conjugation at 1.06 µm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005). [CrossRef] [PubMed]

25.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535–1541 (2007).

26.

A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, “Enhanced photorefractive properties of modified Sn2P2S6,” Opt. Commun. 188, 187–194 (2001). [CrossRef]

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(160.5320) Materials : Photorefractive materials
(190.5040) Nonlinear optics : Phase conjugation

ToC Category:
Materials

History
Original Manuscript: August 8, 2008
Revised Manuscript: September 3, 2008
Manuscript Accepted: September 3, 2008
Published: September 15, 2008

Citation
Tobias Bach, Mark Fretz, Mojca Jazbinšek, and Peter Günter, "Double phase conjugate mirror using Sn2P2S6 for injection locking of a laser diode bar," Opt. Express 16, 15415-15424 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Weiss, S. Sternklar, and B. Fischer, "Double phase-conjugate mirror - Analysis, demonstration, and applications," Opt. Lett. 12, 114-116 (1987). [CrossRef] [PubMed]
  2. D. Wang, Z. Zhang, Y. Zhu, S. Zhang, and P. Ye, "Observations on the coupling channel of two mutually incoherent beams without internal reflections in BaTiO3," Opt. Commun. 73, 495-500 (1989). [CrossRef]
  3. M. D. Ewbank, "Mechanism for photorefractive phase conjugation using incoherent beams," Opt. Lett. 13, 47-49 (1988). [CrossRef] [PubMed]
  4. R. W. Eason and A. M. C. Smout, "Bistability and noncommutative behavior of multiple-beam self-pulsing and self-pumping in BaTiO3," Opt. Lett. 12, 51-53 (1987). [CrossRef] [PubMed]
  5. M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and J. Feinberg, "Mutually pumped phase conjugation in photorefractive strontium barium niobate: theory and experiment," J. Opt. Soc. Am. B 7, 2306-2316 (1990).
  6. C. Medrano, M. Zgonik, S. Berents, P. Bernasconi, and P. Günter, "Self-pumped and incoherent phase conjugation in Fe-doped KNbO3," J. Opt. Soc. Am. B 11, 1718-1726 (1994).
  7. M. P. Petrov, S. L. Sochava, and S. I. Stepanov, "Double phase conjugate mirror using a photorefractive Bi12TiO20 crystal," Opt. Lett. 14, 284-286 (1989). [CrossRef] [PubMed]
  8. K. Shcherbin, "Recent Progress in Semiconductor Photorefractive Crystals," in Photorefractive Materials and Their Applications II, P. Gunter and J.-P. Hiugnard, eds. (Springer-Verlag, New York, 2007), pp. 391-418.
  9. G. W. Ross and R. W. Eason, "Double phase-conjugate mirror with sixfold gain in photorefractive BaTiO3 at near-infrared wavelengths," Opt. Lett. 18, 571-573 (1993). [CrossRef] [PubMed]
  10. R. S. Cudney and M. Kaczmarek, "Optical poling in Rh:BaTiO3," in Trends in Optics and Photonics, Vol. 62, pp. 485-489 (2001).
  11. M. B. Klein, "Photorefractive Properties of BaTiO3," in Photorefractive materials and their applications I, P. G¨unter and J.-P. Hiugnard, eds. (Springer Verlag, Berlin, 1988), pp. 195-236.
  12. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley and Sons, Inc., 1993).
  13. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, "Theory and applications of four-wave mixing in photorefractive media," IEEE J. Quantum Electron. QE-20, 12-30 (1984). [CrossRef]
  14. D. Engin, M. Segev, S. Orlov, and A. Yariv, "Double phase conjugation," J. Opt. Soc. Am. B 11, 1708-1717 (1994).
  15. N. Wolffer, P. Gravey, J. Y. Moisan, C. Laulan, and J. C. Launay, "Analysis of double phase conjugate mirror interaction in absorbing photorefractive crystals: application to BGO:Cu," Opt. Commun. 73, 351-356 (1989). [CrossRef]
  16. S. MacCormack, J. Feinberg, and M. H. Garret, "Injection locking a laser-diode array with a phase conjugate beam," Opt. Lett. 19, 120-122 (1994). [CrossRef] [PubMed]
  17. K. Iida, H. Horiuchi, O. Matoba, T. Omatsu, T. Shimura, and K. Kuroda, "Injection locking of a broad-area diode lasers through a double phase conjugate mirror," Opt. Commun. 146, 6-10 (1998). [CrossRef]
  18. F. Wang, A. Hermerschmidt, and H. J. Eichler, "High-power narrowed-beandwidth output of a broad-area multiple-stripe diode laser with photorefractive phase-conjugated injection," Opt. Commun. 209, 391-395 (2002). [CrossRef]
  19. A. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, "Photorefractive effects in Sn2P2S6," in Photorefractive Materials and Their Applications II, P. Günter and J.-P. Huignard, eds. (Springer-Verlag, New York, 2007), pp. 327-362.
  20. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, and A. A. Grabar, "Photorefractive beam coupling in tin hypothiodiphosphate in the near infrared," Opt. Lett. 21, 752-754 (1996). [CrossRef] [PubMed]
  21. M. Jazbinsek, G Montemezzani, P. G¨unter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, "Fast nearinfrared self-pumped phase conjugation with photorefractive Sn2P2S6," J. Opt. Soc. Am. B 20, 1241-1246 (2003).
  22. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, "Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6," J. Opt. Soc. Am. B 22, 2459-2467 (2005). [CrossRef]
  23. R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, "High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2 P2S6:Te," Opt. Lett. 32, 3230-3232 (2007). [CrossRef] [PubMed]
  24. T. Bach, M. Jazbinsek, P. Gunter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, "Self pumped optical phase conjugation at 1.06 μm in Te-doped Sn2P2S6," Opt. Express 13, 9890-9896 (2005). [CrossRef] [PubMed]
  25. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, "Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping," J. Opt. Soc. Am. B 24, 1535-1541 (2007).
  26. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii, "Enhanced photorefractive properties of modified Sn2P2S6," Opt. Commun. 188, 187-194 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited