OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16697–16703
« Show journal navigation

Laser action in Tb(OH)3/SiO2 photonic crystals

H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou  »View Author Affiliations


Optics Express, Vol. 16, Issue 21, pp. 16697-16703 (2008)
http://dx.doi.org/10.1364/OE.16.016697


View Full Text Article

Acrobat PDF (3417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystals of Tb(OH)3/SiO2 core/shell nanospheres with different periodicities were used as a resonant cavity to explore laser action. By changing the particle size, the optical stop band of the photonic crystals can be tuned to coincide with the multiple emission bands of terbium ions. An overlap of the stop band on the multiple emissions of the active materials embedded inside the photonic crystals offered a good chance for resonance. Lasing emissions arising from terbium ions occurred near the band edge of the PCs were demonstrated.

© 2008 Optical Society of America

1. Introduction

Since dimensional photonic crystals (PCs) developed for years, many efforts have been concentrated on their optical properties, especially the photonic band gap [1

1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]

3

3. N. Tétreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, “Building tunable planar defects into photonic crystals using polyelectrolyte multilayers,” Adv. Mater. 17, 1912–1916 (2005). [CrossRef]

]. Mainly due to Bragg diffraction, periodical structures in submicron range lead to photon localization in the forbidden region. Recently, various applications of PCs have been carried out as a reflector [4

4. E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89, 071107–071109 (2006). [CrossRef]

,5

5. R. K. Price, “Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers,” IEEE J. Quan. Elec. 42, 667–674 (2006). [CrossRef]

], a sensor [6

6. M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518–143520 (2006). [CrossRef]

], or to enhance luminescence [7

7. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102–201104 (2006). [CrossRef]

,8

8. A. C. Arsenault, T. J. Clark, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5, 175–179 (2006). [CrossRef]

] and Raman spectroscopy [9

9. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z, Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504–193506 (2007). [CrossRef]

]. In addition, PCs were often used to induce lasing emission that luminescent materials embedded inside PCs can be excited to interact with them, as well as pumping in a resonance cavity [10

10. S. Woong, B. Park, and Y. P. Lee, “Polarized laser emission from an anisotropic one-dimensional photonic crystal laser,” Appl. Phys. Lett. 90, 161108–161110 (2007). [CrossRef]

,11

11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two dimensional photonic band gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]

]. So far, low threshold lasing has been demonstrated with the combination of opal/inverse opal PCs and several active materials. Examples are fluorescent dye molecules or semiconductors embedded in 1-D, 2-D, and 3-D PCs, in which the photonic stop band can range from ultraviolet (UV) to near infrared (NIR) [12

12. F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Laser emission from dye-doped polymer film in opal photonic crystal cavity,” Appl. Phys. Lett. 89, 241101–241103 (2006). [CrossRef]

16

16. G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18, 343–347 (2006). [CrossRef]

].

2. Experiment

3. Results and discussions

Fig. 1. (a) Top and (b) Cross sectional scanning electron microscope image of assembled Tb(OH)3/SiO2 nanospheres (d=230 nm). (c) The size distribution of Tb(OH)3/SiO2 nanospheres.

The SEM image of assembled Tb(OH)3/SiO2 core/shell nanospheres (d=230 nm) exhibits highly monodispersed and a fcc close-packed lattice structure as shown in Fig. 1(a). More than 30 layers were accumulated on silicon or quartz substrate, forming 3-D PCs, as shown in Fig. 1(b). The size distribution of the Tb(OH)3/SiO2 nanosphere is shown in Fig. (c). We can see that most nanospheres have a diameter of 230 ± 10 nm. Owing to the Bragg diffraction from (111) crystal plane, the reflectance spectrum shows a peak at 490 nm with a linewidth of 200 nm as shown in Fig. 2(a). To confirm the fact that the peak at 490 nm really arises from the formation stop band due to the inherent nature of photonic crystals, we have performed the band structure calculation based on PWE (plane wave expansion) method as shown in Fig. 2(b). The experiment result is indeed consistent with the band structure calculation. By varying the nanospheres size, we can shift the stop band position from 330 nm to 650 nm, as shown in Fig. 2(b). The variation of the stop band versus particle size shows a linear relationship as predicted by the theory of Bragg diffraction [21

21. J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakihidov, and R. H. Baughman, “Anomalous coherent backscattering of light from opal photonic crystals,” Phys. Rev. Lett. 86, 4815–4818 (2001). [CrossRef] [PubMed]

]. The slightly nonlinear behavior may be due to the variation of refractive index of silica in UV range, disorder, and the resulting changed filling fraction [22

22. J. F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108–0351014 (2004). [CrossRef]

]. Moreover, when the diameter of the nanospheres decreases and is comparable to that of the core material (10 nm), influence of Tb ions on effective refractive index needs to be considered.

Fig. 2. (a) Reflectance spectrum of the sample as shown in Fig. 1(a). (b) Band structure calculation of the photonic crystal with 230 nm Tb(OH)3/SiO2 nanospheres. (c) First Bragg stop band of assembled Tb(OH)3/SiO2 PCs versus Tb(OH)3/SiO2 particle size. The straight line represents the prediction according to the Bragg diffraction. Full widths at half maximum of the stop bands are labeled as error bars.

For single or random dispersed Tb(OH)3/SiO2 core/shell nanoparticles, the luminescence spectrum reveals multiple emissions from 380 nm to 625 nm [23

23. R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977). [CrossRef]

] as shown in Fig. 3(a). Among these emissions, most strong emission occurs at the transition from 5D4 to 7F5 bands. As the nanospheres were assembled showing a periodic nanostructure, relative emission intensities of 5D3 to 7F6, 5D3 to 7F5, and 5D3 to 7F4 transitions with respect to other transitions change due to the inhibited propagating wave in photonic crystals. As shown in Fig. 3 (b), the emission bands of 497 nm were largely suppressed when the nanospheres with a diameter of 230 nm were assembled as photonic crystals. This behavior can be easily understood due to the formation of the stop band from 400 nm to 600 nm as shown in Fig. 2(a), and therefore the emission is confined inside the PCs and unable to escape away.

Fig. 3. Cathodoluminescence spectra of (a) Tb(OH)3/SiO2 nanoparticle powder and (b) assembled Tb(OH)3/SiO2 nanoparticles with a diameter of 230 nm taken at electron acceleration voltage of 10 kV and current of 5×10-9 A.

To show lasing or optical resonance effect in PCs, the samples with a diameter of 230 nm (with stop band at around 500 nm) was chosen to demonstrate the influence on the excited luminescence spectrum. Figure 4(a) shows the emission spectra of Tb(OH)3/SiO2 PCs with a diameter of 230 nm with different excitation energies. Below 74 µJ/pulse, the emission spectra at around 400 nm showed a broader emission peak. A sharp peak appears as the pumping energy is increased. The plot of emission intensity versus excitation current is shown in Fig. 4(b). After the pumping energy reached 74 µJ/pulse, the emission near 400 nm occurred as a protrusion, which is near the stop band edge. The narrow width of the emission and the threshold nature clearly prove the lasing emission behavior. Most emission in the stop band was suppressed due to the low photonic density of state (DOS). In contrast, high photonic density of states near the band edge can enhance the emission rate. Laser emission can be achieved with the relative low group velocity and high photonic density of states (DOS) near the band edge of the stop band in PCs.

Quite interestingly, it is found that the lasing peaks exhibit an equal space of about 4 nm as shown in Fig. 4(c). This intriguing behavior can be interpreted well based on the Fébry-Pérot resonance. According to the Fébry-Pérot resonance,25 the resonance length l can be estimated by

l=1n(1λ21λ1),
(1)

where n is the refractive index of PCs, λ1 and λ2 are wavelengths of multimodes. Our experimental result can be well interpreted when the resonance length l is set equal to two times of the thickness of PCs as shown in Fig. 1(b). Therefore, the obtained lasing behavior is attributed to the slow light, high photonic density of states, and the Fébry-Pérot resonance.

Fig. 4. (a) Photoluminescence (PL) spectra of Tb(OH)3/SiO2 PCs with d=230 nm. (b) Output PL emission intensity as a function of pumping energy. (c) Lasing emission spectrum with the excitation energy of 85 µJ.

4. Conclusion

In summary, the stop band of Tb(OH)3/SiO2 PCs for different particle sizes was observed in a wide range, from UV to red. Utilizing this tuning band property, the cavity of different periodicities can be used to assist lasing emissions for multiple transitions of Tb ions. Due to the large density of states near the stop band edge in PCs lasing emissions can be easily obtained. In view of the strong, stable, and narrow emission bands of Tb ions as well as several advantages of SiO2 monodispersed nanoparticles, the work shown here should be very useful for the development of optoelectronic devices in practical applications.

Acknowledgment

This work was supported by National Science Council and Ministry of Education of the Republic of China.

References and links

1.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]

2.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]

3.

N. Tétreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, “Building tunable planar defects into photonic crystals using polyelectrolyte multilayers,” Adv. Mater. 17, 1912–1916 (2005). [CrossRef]

4.

E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, “Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity,” Appl. Phys. Lett. 89, 071107–071109 (2006). [CrossRef]

5.

R. K. Price, “Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers,” IEEE J. Quan. Elec. 42, 667–674 (2006). [CrossRef]

6.

M. Skorobogatiy and A. V. Kabashin, “Photon crystal waveguide-based surface plasmon resonance biosensor,” Appl. Phys. Lett. 89, 143518–143520 (2006). [CrossRef]

7.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89, 201102–201104 (2006). [CrossRef]

8.

A. C. Arsenault, T. J. Clark, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals,” Nat. Mater. 5, 175–179 (2006). [CrossRef]

9.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z, Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504–193506 (2007). [CrossRef]

10.

S. Woong, B. Park, and Y. P. Lee, “Polarized laser emission from an anisotropic one-dimensional photonic crystal laser,” Appl. Phys. Lett. 90, 161108–161110 (2007). [CrossRef]

11.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two dimensional photonic band gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]

12.

F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duan, “Laser emission from dye-doped polymer film in opal photonic crystal cavity,” Appl. Phys. Lett. 89, 241101–241103 (2006). [CrossRef]

13.

W. Cao, A. Muñoz, P. P. Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater. 1, 111–113 (2002). [CrossRef]

14.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Materialstoday 9, 36–42 (2006).

15.

S. Chakravarty, P. Bhattacharya, S. Chakrabarti, and Z. Mi, “Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities,” Opt. Lett. 32, 1296–1298 (2007). [CrossRef] [PubMed]

16.

G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, “Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,” Adv. Mater. 18, 343–347 (2006). [CrossRef]

17.

M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, “Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals,” Appl. Phys. Lett. 88, 201103–201105 (2006). [CrossRef]

18.

X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89, 143513–143514 (2006). [CrossRef]

19.

H. Amekura, A. Eckau, R. Carius, and Ch. Buchal, “Room-temperature photoluminescence from Tb ions implanted in SiO2 on Si,” J. Appl. Phys. 84, 3867–3871 (1998). [CrossRef]

20.

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, “Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres,” Adv. Mater. 19, 577–580 (2007). [CrossRef]

21.

J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakihidov, and R. H. Baughman, “Anomalous coherent backscattering of light from opal photonic crystals,” Phys. Rev. Lett. 86, 4815–4818 (2001). [CrossRef] [PubMed]

22.

J. F. Galisteo-López and C. López, “High-energy optical response of artificial opals,” Phys. Rev. B 70, 035108–0351014 (2004). [CrossRef]

23.

R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977). [CrossRef]

24.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actu. A. 126, 78–82 (2006). [CrossRef]

25.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides an their demonstration by laser oscillation,” Appl. Phys. Lett. 88, 201904–201906 (2006). [CrossRef]

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 14, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 17, 2008
Published: October 6, 2008

Citation
H. Y. Lin, H. K. Fu, C. L. Cheng, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou, "Laser action in Tb(OH)3/SiO2 photonic crystals," Opt. Express 16, 16697-16703 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16697


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. N. Tétreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, "Building tunable planar defects into photonic crystals using polyelectrolyte multilayers," Adv. Mater. 17,1912-1916 (2005). [CrossRef]
  4. E. Feltin, G. Christmann, R. Butté, J.-F. Carlin, M. Mosca, and N. Grandjean, "Room temperature polariton luminescence from a GaN/AlGaN quantum well microcavity," Appl. Phys. Lett. 89, 071107-071109 (2006). [CrossRef]
  5. R. K. Price, "Widely tunable 850-nm metal-filled asymmetric cladding distributed Bragg reflector lasers," IEEE J. Quan. Elec. 42, 667-674 (2006). [CrossRef]
  6. M. Skorobogatiy and A. V. Kabashin, "Photon crystal waveguide-based surface plasmon resonance biosensor," Appl. Phys. Lett. 89, 143518-143520 (2006). [CrossRef]
  7. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, "Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature," Appl. Phys. Lett. 89, 201102-201104 (2006). [CrossRef]
  8. A. C. Arsenault, T. J. Clark, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, "From colour fingerprinting to the control of photoluminescence in elastic photonic crystals," Nat. Mater. 5, 175 -179 (2006). [CrossRef]
  9. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504-193506 (2007). [CrossRef]
  10. S. Woong, B. Park, and Y. P. Lee, "Polarized laser emission from an anisotropic one-dimensional photonic crystal laser," Appl. Phys. Lett. 90, 161108-161110 (2007). [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, "Two dimensional photonic band gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  12. F. Jin, C. F. Li, X. Z. Dong, W. Q. Chen, and X. M. Duan, "Laser emission from dye-doped polymer film in opal photonic crystal cavity," Appl. Phys. Lett. 89, 241101-241103 (2006). [CrossRef]
  13. W. Cao, A. Muñoz, P. P. Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II," Nature Mater. 1, 111-113 (2002). [CrossRef]
  14. A. D. Ford, S. M. Morris, and H. J. Coles, "Photonics and lasing in liquid crystals," Materialstoday 9, 36-42 (2006).
  15. S. Chakravarty, P. Bhattacharya, S. Chakrabarti, and Z. Mi, "Multiwavelength ultralow-threshold lasing in quantum dot photonic crystal microcavities," Opt. Lett. 32, 1296-1298 (2007). [CrossRef] [PubMed]
  16. G. R. Maskaly, M. A. Petruska, J. Nanda, I. V. Bezel, R. D. Schaller, H. Htoon, J. M. Pietryga, and V. I. Klimov, "Amplified spontaneous emission in semiconductor-nanocrystal/synthetic-opal composites: optical-gain enhancement via a photonic crystal pseudogap,"Adv. Mater. 18, 343-347 (2006). [CrossRef]
  17. M. Scharrer, A. Yamilov, X. Wu, H. Cao, and R. P. H. Chang, "Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals," Appl. Phys. Lett. 88, 201103-201105 (2006). [CrossRef]
  18. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, 143513-143514 (2006). [CrossRef]
  19. H. Amekura, A. Eckau, R. Carius, and Ch. Buchal, "Room-temperature photoluminescence from Tb ions implanted in SiO2 on Si," J. Appl. Phys. 84, 3867-3871 (1998). [CrossRef]
  20. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres," Adv. Mater. 19, 577-580 (2007). [CrossRef]
  21. J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakihidov, and R. H. Baughman, "Anomalous coherent backscattering of light from opal photonic crystals," Phys. Rev. Lett. 86, 4815-4818 (2001). [CrossRef] [PubMed]
  22. J. F. Galisteo-López and C. López, "High-energy optical response of artificial opals," Phys. Rev. B 70, 035108-0351014 (2004). [CrossRef]
  23. R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977). [CrossRef]
  24. H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, "Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials," Sens. Actu. A. 126, 78-82 (2006). [CrossRef]
  25. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides an their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904-201906 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited