OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 20099–20105
« Show journal navigation

Polarization effects in a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths

Brendan J. Chick, JamesW.M. Chon, and Min Gu  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 20099-20105 (2008)
http://dx.doi.org/10.1364/OE.16.020099


View Full Text Article

Acrobat PDF (715 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical and experimental study is presented on polarized pulsed propagation from a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths. Experimental observations show that the input polarization state can maintain its linearity and that the fiber birefringence creates different spectral properties dependent on the input polarization orientation. The most extensive spectra are obtained for a coupling polarization angles aligned with the fast and slow axis, which is created by the high-order dispersion and Kerr nonlinearity.

© 2008 Optical Society of America

1. Introduction

Supercontinumm (SC) generation in nonlinear photonic crystal fibers (PCFs) due to the generation of their small core [1

1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

] has been pursued in many areas such as optical coherence tomography (OCT) [2

2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

], coherent anti-Stokes Raman scattering microscopy (CARS) [3

3. H. N. Paulsen, K. M. Hilligsφ e, J. Thφ gersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003). [CrossRef] [PubMed]

], optical metrology [4

4. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]

] and optical trapping [5

5. J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, “Optical micromanipulation using supercontinuum Laguerre Gaussian and Gaussian beams,” Opt. Express 16, 1011–10129 (2008). [CrossRef]

]. SC generation caused by engineered dispersion and nonlinearity can be easily demonstrated with high power continuous wave lasers or pulsed laser systems.

Three structural properties of PCFs allow the modification of dispersion and nonlinearity; the air-fill fraction; a one-dimensional asymmetry; and the core size. Dispersion engineering by the manipulation of the air hole structure of a PCF [6

6. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]

, 7

7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. , 11, 674–676, (1999). [CrossRef]

, 8

8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F.G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature , 474, 511–515 (2003). [CrossRef]

], allows the guidance of the optical wave to be influenced by different dispersion effects. By using a low hole diameter to pitch ratio (0.6) and maintaining a small core diameter (1.8 µm) the second order dispersion profile can be tailored to have two-zero dispersion wavelengths (ZDWs) which is known to enhance nonlinear processes such as four-wave mixing [9

9. T. V. Andersen, K. M. Hilligsϕ e, C. K. Nielsen, J Thϕ gersen, K. P. Hansen, S. R. Keiding, and J. J Larsen, “Continous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths,” Opt. Express 124113–4122 (2004). [CrossRef] [PubMed]

] and higher-order dispersion effects.

A one-dimensional asymmetry (e.g. the increase of two holes either side of the core) will cause different propagation parameters for the fundamental linearly polarized modes, creating birefringence. The incorporation of high birefringence, dispersion and nonlinearity allows the maintaining of the coupled polarization state while generating a SC [10

10. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B , 21, 248–257, 2004. [CrossRef]

, 11

11. Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12, 791–796 (2004). [CrossRef] [PubMed]

]. Highly polarized coherent white light could be of use in microscopy and optical pump probe systems.

The extent of SC generation is enhanced in the anomalous dispersion regime, where the carrier frequency of the coupled light is close to the ZDW. In this region four-wave mixing is the strongest causing strong Stokes and Anti-Stokes frequencies [9

9. T. V. Andersen, K. M. Hilligsϕ e, C. K. Nielsen, J Thϕ gersen, K. P. Hansen, S. R. Keiding, and J. J Larsen, “Continous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths,” Opt. Express 124113–4122 (2004). [CrossRef] [PubMed]

]. In the femtosecond regime the third- order dispersion is the dominant broadening mechanism and a high degree of curvature in dispersion is required to enhance the third-order term [13

13. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18, 678–682 (1979). [CrossRef] [PubMed]

]. Since the geometry of fibres with two ZDWs inherent these characteristics, they are of particular interest in generating extensive SC spectra.

To date, what has not been shown is an experimental and theoretical study of polarized pulse propagation of femtosecond pulses in two ZDWs nonlinear photonic crystal fiber. This study uses current theoretical methodology to understand the principles of polarized light propagation under the influence of two ZDWs. An explanation is given for why the spectra are different for different input polarisation orientations. A comparison is made between the theoretical and experimental degree of polarization.

2. Numerical study

The polarization evolution in nonlinear PCF is modelled using the coupled mode nonlinear Schrödinger equation (CMNLSE) [14

14. G. P. Agrawal, “Nonlinear fiber optics,” 3rd ed. (Academic San Diego, Calif., 2002).

, 15

15. S. Coen, A. H. L. Chau, R. Leohardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in phototonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]

], given by:

Ajz+12(Δβ0+Δβ1Ajt)m2im+1m!βmjmAjtm
=iγ(1+iτ0t)Aj((1fR)[Aj2+23Ak2]+fRRj(z,t))
(1)
Rj(z,t)=thR(tt)(Aj2+Ak2)dt
(2)

where Aj and Ak are the field components with j and k=x or y (xy), z is a propagation coordinate, the time coordinate moving in a reference frame is given by t=τ- (β 1j+β1k) z/2, βm is the mth order propagation coefficient, Δβ0=β0j-β0k) is the phase mismatch, Δβ 1=(β 1j-β 1k) is the group velocity mismatch, γ and τ 0 are the nonlinearity and optical shock coefficients respectively. The simulation method used in this study is the symmetrized split-step Fourier method [14

14. G. P. Agrawal, “Nonlinear fiber optics,” 3rd ed. (Academic San Diego, Calif., 2002).

] utilising a fourth order Runge Kutta method for the nonlinear integration [16

16. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibres,” Opt. Express 12, 124–135 (2004). [CrossRef] [PubMed]

].

Fig. 1. The dispersion coefficients related to the mode propagation constant β. The left hand side of the figure shows the first- and second-order dispersion coefficients for the two fundamental modes. The right hand side shows the phase mismatch (Δβ 0) and the group velocity mismatch (Δβ 1) between these modes. The inset is the crystal geometry in relation to the presented curves.

The propagation constant, for the two fundamental propagating modes were calculated using plane wave theory [17

17. M. J. Steel, T. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 448 (2001). [CrossRef]

] This data set is expanded into a Taylor series to obtain the dispersion coefficients (Eq. (3)) and phase mismatch (Eq. (4)) which is used to find Δβ 0 and Δβ 1. The mode profiles as a function of frequency can be used to calculate the nonlinear terms γ and τ0 [18

18. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, 2001, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultra broadband optical pulses in a fused-silica fiber,” IEEE J. Quant. Electron. 37, 398–404 (2001). [CrossRef]

, 19

19. K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quant. Electron , 25, 2665–2673 (1989). [CrossRef]

].

βj(ω)=β0j+β1j(ωω0)+β2j2!(ωω0)2+β3j3!(ωω0)2
(3)
Δβj(ω)=Δβ0j+Δβ1j(ωω0)+Δβ2j2!(ωω0)2+Δβ3j3!(ωω0)2
(4)

Table 1. Dispersion data for the polarized mode of the nonlinear fibre.

table-icon
View This Table

Equation 1 was used to calculate 87 fs pulses propagating at different input polarization orientations. A pulse width of 87 fs and a fiber length of 130 mm were chosen to coincide with experimental conditions.

Figure 2 shows the output spectra obtain from a nonlinear PCF pumped with 87 fs pulses at input polarization orientations of 0 (y-axis), 45 and 90 (x-axis) degrees. The simulation shows that the polarization state is maintained for light coupled into either the x-polarized or y-polarized axis of the fiber. The x-polarized mode has the most extensive spectra and this is because the pump wavelength undergoes a stronger initial compression caused by the stronger second-order dispersion term. For input polarisation orientation of 45 degrees, the degree of polarization is not maintained due to an equal coupling between modes and the spectra are different due to the relative strength of the second- order dispersion.

When the pulse enters the nonlinear fibre, it undergoes a transformation to form a high-order soliton. The high-order soliton then breaks up in a fission process which converts it into lower-order solitons [20

20. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev.Lett. , 88, 173901 (2002). [CrossRef] [PubMed]

]. The order of the initial soliton and the length at which soliton fission occurs is given by [21

21. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Mod. Phys. Rev. , 78, 113–1184 (2006).

]:

Fig. 2. Theoretically obtained spectra of propagation within a 130mm NL-PCF with a 87fs pulse. Figures (a), (b) and (c) are the spectra for the y polarized output field with (d), (e) and (f) for the x polarized output field. θ is the input polarization angle with respect to the y axis.
Fig. 3. Theoretically obtained spectral and temporal profile of 87fs pulsed propagation within a 130mm nonlinear PCF. Figures (a), (b) and (c) are the spectra for the y polarized output field with (d), (e) and (f) for the x polarized output field.
N=(γP0T02β2)12
(5)
Lf=T02β21N
(6)

where P 0 is the peak power and T 0 is the full width at half maximum.

Although the soliton order is higher along the y axis in comparison to the x axis, the fission length is 0.0465 m and 0.035 m, respectively, which could be attributing to the more extensive spectra. Although there are some differences between the spectral components between input polarization orientations, the spectra are similar and hence both axes could be used for polarized broadband applications.

Figure 3 confirms that the output spectra are different between the two fundamental modes. The output spectra for the y-polarized mode travels at a higher speed compared to the x-polarized mode which is due to the group velocity mismatch. Fig. 3 (a) and (f) show the difference in the pulse structure and is due to the different dispersion properties and fission processes of the coupled axes. The effects observed would be important to consider in time-resolved polarized illumination applications since there is a delay between spectral features.

3. Experimental study

The experimental setup is shown in Fig. 4. A pulsed light beam from a Ti:Sapphire laser was coupled into a nonlinear PCF (Crystal-fibre). Two Glan Thomson polarizers were used to vary the input power and a half wave plate to alter the input polarisation orientation. The output pulse was analyzed with a Glan Thomson polarizer. Spectra were observed and recorded using an Ando spectrometer and Princeton Instruments CCD (pixis 100). The pulsed propagation spectra were obtained for different input polarization orientations. The characteristics of the fiber used in this experimental study are shown in Fig. 1 and table 1.

Fig. 4. Optical arangment used in this study. GT - Glan Tomson, WP - Wave Plate, Spec - Spectrograph and SA - Spectrum Anaylser
Fig. 5. Spectral properties of the polarized modes of the nonlinear PCF. The perpendicular (blue) and parallel polarized (red) states are with reference to the output orientation of the laser.

Figure 5 shows the spectra for the two output modes of the PCF coupled with 780 nm, 87 fs pulses and 15mWaverage power. The spectra show the high degree of polarization for the input pulse orientations of 0 and 90 degrees. In addition, a large degree of the red-shifted radiation attributed to stimulated Raman scattering is present. The 0 and 90 degree spectra are different and confirm the theoretically obtained results. For 0 degrees it is apparent that there is a blue-shift of radiation and is attributed to the dispersive wave generation and four-wave mixing. In addition, a small amount of radiation is coupled into the orthogonal mode which is attributed to the depolarization by the high numerical aperture input coupling.

Fig. 6. Degree of polarization for the fast and the slow axes of the fiber.

The degree of polarization (DOP), defined as DOP=(I||-I⊥)/(I||+I⊥), is shown in Fig. 6. The experimental curves show a strong degree of polarization for all wavelengths except for the pump bandwidth. This confirms the high degree of polarization measured in Fig. 5. The theoretical degree of polarization shows the effects of depolarization are not attributed to cross coupling and must be introduced by the input coupling.

4. Conclusion

References and links

1.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

2.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

3.

H. N. Paulsen, K. M. Hilligsφ e, J. Thφ gersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003). [CrossRef] [PubMed]

4.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]

5.

J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, “Optical micromanipulation using supercontinuum Laguerre Gaussian and Gaussian beams,” Opt. Express 16, 1011–10129 (2008). [CrossRef]

6.

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]

7.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, “Dispersion compensation using single-material fibers,” IEEE Photon. Technol. Lett. , 11, 674–676, (1999). [CrossRef]

8.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F.G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres,” Nature , 474, 511–515 (2003). [CrossRef]

9.

T. V. Andersen, K. M. Hilligsϕ e, C. K. Nielsen, J Thϕ gersen, K. P. Hansen, S. R. Keiding, and J. J Larsen, “Continous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths,” Opt. Express 124113–4122 (2004). [CrossRef] [PubMed]

10.

Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B , 21, 248–257, 2004. [CrossRef]

11.

Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12, 791–796 (2004). [CrossRef] [PubMed]

12.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A , 17, 1448–1453 (1978). [CrossRef]

13.

M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18, 678–682 (1979). [CrossRef] [PubMed]

14.

G. P. Agrawal, “Nonlinear fiber optics,” 3rd ed. (Academic San Diego, Calif., 2002).

15.

S. Coen, A. H. L. Chau, R. Leohardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in phototonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]

16.

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibres,” Opt. Express 12, 124–135 (2004). [CrossRef] [PubMed]

17.

M. J. Steel, T. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 448 (2001). [CrossRef]

18.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, 2001, “Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultra broadband optical pulses in a fused-silica fiber,” IEEE J. Quant. Electron. 37, 398–404 (2001). [CrossRef]

19.

K.J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quant. Electron , 25, 2665–2673 (1989). [CrossRef]

20.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev.Lett. , 88, 173901 (2002). [CrossRef] [PubMed]

21.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Mod. Phys. Rev. , 78, 113–1184 (2006).

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5430) Physical optics : Polarization

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 3, 2008
Revised Manuscript: November 11, 2008
Manuscript Accepted: November 16, 2008
Published: November 21, 2008

Citation
Brendan J. Chick, James W. Chon, and Min Gu, "Polarization effects in a highly birefringent nonlinear photonic crystal fiber with two-zero dispersion wavelengths," Opt. Express 16, 20099-20105 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-20099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  3. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). [CrossRef] [PubMed]
  4. Th. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  5. J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia, "Optical micromanipulation using supercontinuum Laguerre Gaussian and Gaussian beams," Opt. Express 16, 1011-10129 (2008). [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  7. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett.,  11, 674-676, (1999). [CrossRef]
  8. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F.G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres," Nature,  474, 511-515 (2003). [CrossRef]
  9. T. V. Andersen, K. M. Hilligs e, C. K. Nielsen, J Th gersen, K. P. Hansen, S. R. Keiding, and J. J Larsen, "Continous-wave wavelength conversion in a photonics crystal fiber with two zero-dispersion wavelengths," Opt. Express 124113-4122 (2004). [CrossRef] [PubMed]
  10. Z. Zhu and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B,  21, 248-257, 2004. [CrossRef]
  11. Z. Zhu and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber," Opt. Express 12, 791-796 (2004). [CrossRef] [PubMed]
  12. R. H. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A,  17, 1448-1453 (1978). [CrossRef]
  13. M. Miyagi and S. Nishida, "Pulse spreading in a single-mode fiber due to third-order dispersion," Appl. Opt. 18, 678- 682 (1979). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear fiber optics 3rd ed. (Academic San Diego, Calif., 2002).
  15. S. Coen, A. H. L. Chau, R. Leohardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in phototonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  16. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibres," Opt. Express 12, 124-135 (2004). [CrossRef] [PubMed]
  17. M. J. Steel, T. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, "Symmetry and degeneracy in microstructured optical fibers," Opt. Lett. 26, 448 (2001). [CrossRef]
  18. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, 2001, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultra broadband optical pulses in a fused-silica fiber," IEEE J. Quant. Electron. 37, 398-404 (2001). [CrossRef]
  19. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quant. Electron,  25, 2665-2673 (1989). [CrossRef]
  20. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev.Lett.,  88, 173901 (2002). [CrossRef] [PubMed]
  21. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Mod. Phys. Rev.,  78, 113-1184 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited