## Generation of 10-GHz clock sequential time-bin entanglement

Optics Express, Vol. 16, Issue 5, pp. 3293-3298 (2008)

http://dx.doi.org/10.1364/OE.16.003293

Acrobat PDF (497 KB)

### Abstract

This letter reports telecom-band sequential time-bin entangled photon-pair generation at a repetition rate of 10 GHz in periodically poled reverse-proton-exchange lithium niobate waveguides based on mode demultiplexing. With up-conversion single-photon detectors, we observed an entangled-photon-pair flux of 313 Hz and a two-photon-interference-fringe visibility of 85.32% without subtraction of accidental noise contributions.

© 2008 Optical Society of America

2. J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. **82**, 2594 (1999). [CrossRef]

2. J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. **82**, 2594 (1999). [CrossRef]

3. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, “Violation of Bell’s Inequality over 4 km of Optical Fiber,” Phys. Rev. Lett. **73**, 1923 (1994). [CrossRef] [PubMed]

6. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. **37**, 26–28 (2001). [CrossRef]

7. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide,” Opt. Express **15**, 1679 (2007). [CrossRef] [PubMed]

8. H. Takesue and K. Inoue, “Generation of 1.5-*µ*m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A. **72**, 041804 (2005). [CrossRef]

3. P. R. Tapster, J. G. Rarity, and P. C. M. Owens, “Violation of Bell’s Inequality over 4 km of Optical Fiber,” Phys. Rev. Lett. **73**, 1923 (1994). [CrossRef] [PubMed]

^{(2)}nonlinearity. The time interval between the two pulses is τ

_{1}, and the pulse duration is τ

_{2}(τ

_{2}≪τ

_{1}). The coherence time of the laser pulse is much longer than the time interval τ

_{1}[11

11. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. **62**, 2205 (1989). [CrossRef] [PubMed]

*ϕ*. When the two pulses pass through the nonlinear crystal, both have a certain probability to generate a photon pair via the process of parametric down-conversion. If there is no other way except for the time difference to distinguish the two possible generations, the quantum state of the photon pair is given by,

_{p}^{1}and t

_{2}(

*t*

_{2}-

*t*

_{1}=τ

_{1}) represent the generating time of the photon pair. This type of entanglement has been widely used in QKD and quantum teleportation while people are now trying sequential time-bin entanglement [12

12. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hibert space,” Phys. Rev. A. **69**, 050304 (2004). [CrossRef]

_{2}with time interval τ

_{1}, while the phase between each consecutive pulse in the train is

*ω**τ

_{p}_{1}, where

*ω*denotes the angular frequency of the laser. Therefore, after pumping the nonlinear crystal, the quantum state is,

_{p}9. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock,” Opt. Express **15**, 10288 (2007). [CrossRef] [PubMed]

12. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hibert space,” Phys. Rev. A. **69**, 050304 (2004). [CrossRef]

_{1}=100

*ps*, τ

_{2}=40

*ps*) as shown in Fig. 1.

8. H. Takesue and K. Inoue, “Generation of 1.5-*µ*m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A. **72**, 041804 (2005). [CrossRef]

*t*〉

_{x}_{y}into

*t*represents the photon-pair generation time and

_{x}*θ*is the phase difference between the two paths of the interferometer for mode y, which can be changed by adjusting the temperature of the interferometer. Then the output state from the MZ interferometer will be,

_{y}*D*and

_{s}*D*, connected to a time-interval analyzer (TIA) to generate start and stop signals, respectively, for the coincidence measurement.

_{i}8. H. Takesue and K. Inoue, “Generation of 1.5-*µ*m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A. **72**, 041804 (2005). [CrossRef]

9. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock,” Opt. Express **15**, 10288 (2007). [CrossRef] [PubMed]

*µ*m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A. **72**, 041804 (2005). [CrossRef]

9. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock,” Opt. Express **15**, 10288 (2007). [CrossRef] [PubMed]

*µ*m band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers,” Phys. Rev. A. **72**, 041804 (2005). [CrossRef]

*θ*in the signal channel and varied the phase

_{s}*θ*in the idler channel by adjusting the temperature of the two interferometers. We first set the temperature of the MZ interferometer in the signal channel to 25.71 °C, and varied the temperature of the other interferometer in the idler channel. We achieved an interference pattern with a visibility of (87.19±5.78)%. To demonstrate entanglement, one interference pattern is not sufficient; at least one other pattern in a non-orthogonal basis is necessary. To observe this pattern, we changed the temperature of the signal interferometer to 27.51 °C and observed another interference-fringe pattern with a visibility (83.44±5.76)% as shown in Fig. 4. The two curves with an average visibility of (85.32±5.77)%, which is well beyond the visibility of 71% necessary for violation of the Bell inequality [15

_{i}15. J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. **23**, 880 (1996). [CrossRef]

## Acknowledgement

## References and links

1. | D. Bouwmeester, A. Ekert, and A. Zeilinger
, eds., |

2. | J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. |

3. | P. R. Tapster, J. G. Rarity, and P. C. M. Owens, “Violation of Bell’s Inequality over 4 km of Optical Fiber,” Phys. Rev. Lett. |

4. | W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell Inequalities by Photons More Than 10 km Apart,” Phys. Rev. Lett. |

5. | I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett. |

6. | S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. |

7. | T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide,” Opt. Express |

8. | H. Takesue and K. Inoue, “Generation of 1.5- |

9. | Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock,” Opt. Express |

10. | Xiuping Xie and M. M. Fejer, “Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions,” Opt. Lett. |

11. | J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. |

12. | H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hibert space,” Phys. Rev. A. |

13. | C. Langrock, E. Diamantini, R. V. Roussev, H. Takesue, Y. Yamamoto, and M. M. Fejer, “High efficient single-photon detection at communication wavelengths by use of up-conversion in reverse-proton-exchange periodically poled LiNbO |

14. | Here all the datas are taken or estimated in the 0.2-nm-wide 3 dB acceptance bandwidth of the detectors. |

15. | J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. |

**OCIS Codes**

(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

(270.5565) Quantum optics : Quantum communications

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: September 19, 2007

Revised Manuscript: December 1, 2007

Manuscript Accepted: December 11, 2007

Published: February 25, 2008

**Citation**

Qiang Zhang, Carsten Langrock, Hiroki Takesue, Xiuping Xie, Martin Fejer, and Yoshihisa Yamamoto, "Generation of 10-GHz clock sequential time-bin entanglement," Opt. Express **16**, 3293-3298 (2008)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-3293

Sort: Year | Journal | Reset

### References

- D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
- J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594 (1999). [CrossRef]
- P. R. Tapster, J. G. Rarity, and P. C. M. Owens, "Violation of Bell’s Inequality over 4 km of Optical Fiber," Phys. Rev. Lett. 73, 1923 (1994). [CrossRef] [PubMed]
- W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell Inequalities by Photons More Than 10 km Apart," Phys. Rev. Lett. 81, 3563 (1998). [CrossRef]
- I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
- S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26-28 (2001); [CrossRef]
- T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679 (2007). [CrossRef] [PubMed]
- H. Takesue and K. Inoue, "Generation of 1.5-µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers," Phys. Rev. A. 72, 041804 (2005). [CrossRef]
- Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, Y. Yamamoto, "Correlated photon-pair generation in reverse-proton-exchange PPLN waveguide with integrated mode demultiplexer at 10 GHz clock," Opt. Express 15, 10288 (2007). [CrossRef] [PubMed]
- Xiuping Xie and M. M. Fejer, "Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions," Opt. Lett. 31, 799-801 (2006) [CrossRef] [PubMed]
- J. D. Franson, "Bell inequality for position and time," Phys. Rev. Lett. 62, 2205 (1989). [CrossRef] [PubMed]
- H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, "Tailoring photonic entanglement in high-dimensional Hibert space," Phys. Rev. A. 69, 050304 (2004). [CrossRef]
- C. Langrock, E. Diamantini, R. V. Roussev, H. Takesue, Y. Yamamoto and M. M. Fejer, "High efficient single-photon detection at communication wavelengths by use of up-conversion in reverse-proton-exchange periodically poled LiNbO3 waveguie," Opt. Lett. 30, 1725 (2005). [CrossRef] [PubMed]
- Here all the datas are taken or estimated in the 0.2-nm-wide 3 dB acceptance bandwidth of the detectors.
- J. F. Clauser, M. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories Proposed Experiment to Test Local Hidden-Variable Theories," Phys. Rev. Lett. 23, 880 (1996). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.