OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 6 — Mar. 17, 2008
  • pp: 4085–4093
« Show journal navigation

Broadband IR supercontinuum generation using single crystal sapphire fibers

Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Stuart (Shizhuo) Yin, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo  »View Author Affiliations


Optics Express, Vol. 16, Issue 6, pp. 4085-4093 (2008)
http://dx.doi.org/10.1364/OE.16.004085


View Full Text Article

Acrobat PDF (160 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, an investigation on broadband IR supercontinuum generation in single crystal sapphire fibers is presented. It is experimentally demonstrated that broadband IR supercontinuum spectrum (up to 3.2µm) can be achieved by launching ultra-short femtosecond laser pulses into single crystal sapphire fiber with a dimension 115µm in diameter and 5cm in length, which covers both the near IR spectral region and the lower end of the mid-IR spectral range. Furthermore, the mechanism of supercontinuum generation in single crystal sapphire fibers is briefly addressed. When the fiber length is shorter than the dispersion length, the self-phase modulation dominates the broadening effect. In this case, the broad supercontinuum spectrum with a smooth profile can be obtained. However, when the fiber length is longer than the dispersion length, the soliton-related dynamics accompanied by the self-phase modulation dominates the broadening effect. There are discrete spikes in the spectrum (corresponding to different order solitons). The above assumption of supercontinuum generation mechanism is quantitatively modeled by the computer simulation program and verified by the experimental results. Thus, one can adjust the spectral profile by properly choosing the length of the sapphire fibers. The broad IR spectral nature of this supercontinuum source can be very useful in a variety of applications such as broadband LADAR, remote sensing, and multi-spectrum free space communications.

© 2008 Optical Society of America

1. Introduction

Extreme broadening of a narrow spectral laser pulses can be realized via the nonlinear interactions between the laser pulses and the optical medium in which they are traveling. This process is often referred as supercontinuum generation (SCG).

In recent years, the interest in broadband mid-IR light sources has increased due to the critical need of a variety of applications such as IR spectroscopy, broadband laser radar (LADAR), and combustion monitoring [1

1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Quantum Electron. 13, 738–749 (2007). [CrossRef]

,2

2. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, “Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007). [CrossRef] [PubMed]

]. Conventional sources such as optical parametric amplifiers (OPOs), tunable solid-state lasers, and quantum cascaded lasers (QCLs) are currently utilized for these applications [3

3. I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003). [CrossRef]

]. However, wavelengths of OPOs and QCLs need to be continuously tuned to cover the entire spectral range needed. Compared to these conventional sources, a supercontinuum source has the advantage of covering a wider range of spectrum without the time delay caused by the wavelength tuning of conventional sources.

In the past decade, near IR (<2µm) ultra-broadband supercontinuum (broadened by >1000 nm) sources have been successfully created by launching femtosecond laser pulses into highly nonlinear silica fibers [4–6

4. J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]

]. Such kinds of near IR supercontinuum sources have also been applied for several applications including optical coherence tomography [7

7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002). [CrossRef]

, 8

8. I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

], optical metrology [9

9. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

, 10

10. S. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003). [CrossRef]

], telecommunications [11

11. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber,” Photon. Technol. Lett. 11, 322–324 (1999). [CrossRef]

, 12

12. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 26, 2089–2090 (2000). [CrossRef]

] and spectroscopy [13

13. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B 90, 47–53 (2008). [CrossRef]

].

Even though some papers have shown SCG in silica-based fibers that extend into mid-IR region, SCG in silica materials are limited by heavy material absorption in the mid-IR region [1

1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Quantum Electron. 13, 738–749 (2007). [CrossRef]

]. To realize the SCG in the mid-IR region, IR glass fibers are commonly employed [2

2. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, “Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007). [CrossRef] [PubMed]

,14

14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, “Mid-infrared supercontinuum generation to 4.5µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006). [CrossRef] [PubMed]

,15

15. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, “Chalcogenide optical fibers target mid-IR applications,” Laser Focus World 41, 83 (2005).

,16

16. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, “Spectrally smooth supercontinuum from 530nm to 3µm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006). [CrossRef] [PubMed]

]. Although mid-IR SCG have been successfully generated in these IR glass fibers, it is difficult to achieve very high power supercontinuum sources because of the lower softening temperature of these IR glass fibers [e.g., around 455 °C for ZBLAN Fluoride fiber [17

17. J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Crystalline Solids 287, 401–404 (2001). [CrossRef]

], 600 °C to 900 °C for Chalcogenide fiber [15

15. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, “Chalcogenide optical fibers target mid-IR applications,” Laser Focus World 41, 83 (2005).

], and 538 °C for SF-6 fiber [18

18. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002). [PubMed]

], which are lower than that of silica fibers (~1175 °C) [19

19. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation,” Lasers Surgery Medicine 38, 787–791 (2006). [CrossRef]

]].

2. Technical approach

It is well known that SCG can be mathematically described by the nonlinear-Schödinger equation (NLSE) [24

24. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281, 1113–1117 (2008). [CrossRef]

, 25

25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

]:

Az+α2A+i2β22AT216β33AT3=iγ[A2A+iω0T(A2A)TRAA2T],
(1)

where A(T,z) is the complex amplitude of the light field at the axial location z at time T, α represents the fiber loss, βk(k=2,3) denote the second and the third coefficients of the Taylor-series expansion of the propagation constant β around ω0, and γ represents the nonlinearity coefficient. Since the sapphire fiber, used in our experiment, is highly multimode (with a diameter over a hundred micron), the dispersion effect is dominated by the material dispersion of the fundamental mode [26

26. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef] [PubMed]

]. Furthermore, because a c-axis sapphire fiber is employed in the experimental study, only the ordinary refractive index needs to be considered. The ordinary refractive index of the sapphire material as a function of wavelength can be described by the following Sellmeier equation [27

27. M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).

]:

no(λ)=1+1.4313496λ2λ2(0.0726631)2+0.65054713λ2λ2(0.1193242)2+5.3414021λ2λ2(18.028251)2.
(2)

Then, the material dispersion parameter, D, can be determined from the second derivative of n(λ), as given by [28

28. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (John Wiley and Sons, Inc., New Jersey, 2004).

]:

D(λ)=λcd2nodλ2.
(3)

Figure 1 shows the calculated material dispersion as a function of wavelength for the sapphire fiber based on Eq. (3). At 2µm, the pumping wavelength, used in our experiments, the dispersion parameter, D, is about 57.28ps/nm-km, which falls within the anomalous dispersion region.

Fig. 1. Calculated material dispersion for the sapphire fiber

To investigate the mechanism of SCG in a sapphire fiber, we need to estimate the dispersion length and the nonlinear interaction length of the sapphire fibers, as given by [25

25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

]

LD=T02β2,and
(4a)
LNL=1γP0,
(4b)

where T0 is the pulse width, β2 is the group velocity dispersion, P0 is the peak power, and γ is the nonlinear coefficient. To get the value of LNL, first, the nonlinear coefficient, γ, is determined by substituting the following values, including the nonlinear refractive index coefficient n2=2.8×10-20m2/W, the effective area of sapphire fiber Aeff=10,386µm2 (corresponding to 115µm fiber diameter), and λ=2µm into the expression of nonlinear coefficient γ=n2ω0/cAeff=2πn2/λAeff. The calculated nonlinear coefficient is about γ=8.47×10-6/m·W. Then, the nonlinear lengths, LNL, corresponding to different peak powers, can be derived. For example, substituting γ=8.47×10-6/m·W, P0=30.94GW/cm2×Aeff=3.213×106W and P0=154.7GW/cm2×Aeff=1.607×107W into Eq. (4b), the corresponding nonlinear lengths are 3.67cm and 0.735cm, respectively.

To calculate the dispersion length, LD, we first calculate the value of group velocity dispersion, β2, which can be expressed in the form of

β2=λ32πc2·d2n0dλ2,
(5)

where c is the light speed in vacuum. Substituting λ=2µm and the value of d2n0/dλ2=-8.592×10-3µm-2 [calculated based on Eq. (2)] into Eq. (5), the calculated β2 is about -121.5ps2/km at λ=2µm. Furthermore, substituting β 2=-121.5ps2/km and the pulse width T0=150fs into Eq. (4a), the value of LD is calculated to be LD=18.52cm.

3. Experimental procedures and results

In the experiment, a c-axis single crystal sapphire fiber with a 115µm diameter was used for the SCG. Figure 2 shows the experimental set up for SCG in sapphire fiber. The 2µm pumping source is created by using an optical parametric amplifier (OPA) seeded by a femtosecond laser, which has a 784nm central wavelength, a 1 kHz repetition rate, a 150fs pulse width, and a 5mm diameter beam size. The ultra-short pulses were focused by a 5× microscope objective with a 25.4mm focal length. The fiber was placed 1.5mm behind the focal plane. The beam size at the input end of the fiber was measured to be 295.3µm, which was larger than the diameter of the sapphire fiber so that the cross section of the fiber end was fully illuminated. According to Fig. 1, the material dispersion D at 2µm is 57.28ps/nm-km and is considered to be within the anomalous dispersion region. The spectrum obtained from the sapphire fiber was collimated by a Zinc Selenide IR (ZnSe) lens, and measured by a monochromator (MicroHR, Horiba Jobin Yvon Inc.) with a lock-in amplifier. A grating with a blazing wavelength of 1.5µm and a PbS photodetector were used for the 1-2µm range spectral profile measurement and a grating blazed at 4µm and a HgCdTe cryogenic photoreceiver were used for the 2-3µm range spectral profile measurement.

Fig. 2. Experimental set up for supercontinuum generation in sapphire fiber

Fig. 3. Experimentally measured spectra for a 5cm sapphire fiber at two different input peak power levels of (a) 3.213×106W and (b) 1.607×107W.

To illustrate the required experimental conditions, first, let us have a brief review on the soliton generation theory. Soliton can be created when the following phase matching condition is met [29

29. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006). [CrossRef] [PubMed]

]:

n2βn(ω0)n!(ωRω0)n=γ(ω0)P02,
(6)

where ωR and ω0 are the radiation and the soliton frequencies, respectively, and P0 is the peak power. The soliton order, N, can be determined by N=LDLNL [33

33. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]

]. Substituting LD=18.52cm and LNL=0.735cm (corresponding to the peak power P0=1.607×107W) into the expression of N, we obtain N=18.52cm0.735cm5 . Table 1 shows dispersion parameter β=(dmβ/m), where m=1, 2….., calculated based on Eqs. (2) and (3) [25

25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

, 28

28. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (John Wiley and Sons, Inc., New Jersey, 2004).

]. By using resonance condition Eq. (6) and β values given in Table 1, the fundamental soliton wavelength is approximately 1.155µm.

Table 1. dispersion parameter β

table-icon
View This Table

Fig. 4. Experimentally measured spectra for a 35cm sapphire fiber at two different input power levels of (a) 3.213×106W and (b) 1.607×107W.

4. Discussion

It is a challenging task to generate supercontinuum in the mid-IR region due to the absorption of the silica material in the mid-IR regime [1

1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Quantum Electron. 13, 738–749 (2007). [CrossRef]

]. Efforts have been made to extend the SCG at longer wavelengths. For example, in [35

35. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Light. Tech. 23, 13–18 (2005). [CrossRef]

], the authors use germano-silicate fibers to generate a supercontinuum that extends to the lower end of the mid-IR region (up to 2.8µm) by shining UV light onto a 1cm fiber to shift the zero dispersion point by over 100nm. The further extend to the longer wavelength (i.e., beyond 2.8µm) is largely limited by the heavy absorption of the silica materials. As shown in Fig. 6, the absorption of silica in the mid-IR region is much stronger than in sapphire. To experimentally demonstrate that it is possible to generate SCG beyond 2.8µm by employing sapphire fiber, we conducted the SCG experiment by using a pump wavelength at 2.5µm. We launched the laser pulses into a 5cm sapphire fiber with an input peak power density level of 92.82GW/cm2. Figure 7 shows the experimentally measured spectra from the 5cm sapphire fiber pumped at 2.5µm. A spectrum from 2µm to 3.2µm was obtained. This result experimentally proves that a SCG from sapphire fiber can extend further into the mid-IR regime than a SCG from a silica fiber.

Fig. 5. Spectra comparison between simulation (dashed lines) and experimental results (solid lines) for (a) 5cm sapphire fiber and (b) 35cm sapphire fiber.
Fig. 6. Transmission characteristics of silica and sapphire materials [36].
Fig. 7. Experimentally measured spectra for a 5cm sapphire fiber at the pump wavelength of 2.5µm and input power level of 9.640×106W.

5. Conclusions

Acknowledgments

We are grateful to Dr. Zhiwen Liu, Dr. Kebin Shi, and Peng Li for their assistance on the simulation work and helpful discussion.

References and links

1.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Quantum Electron. 13, 738–749 (2007). [CrossRef]

2.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, “Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007). [CrossRef] [PubMed]

3.

I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003). [CrossRef]

4.

J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]

5.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]

6.

K. Tamura, E. Ippen, H. Haus, and L. Nelson, “77-fs pulse generation from a stretched pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]

7.

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002). [CrossRef]

8.

I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001). [CrossRef]

9.

D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]

10.

S. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003). [CrossRef]

11.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber,” Photon. Technol. Lett. 11, 322–324 (1999). [CrossRef]

12.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett. 26, 2089–2090 (2000). [CrossRef]

13.

R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy,” Appl. Phys. B 90, 47–53 (2008). [CrossRef]

14.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, “Mid-infrared supercontinuum generation to 4.5µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006). [CrossRef] [PubMed]

15.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, “Chalcogenide optical fibers target mid-IR applications,” Laser Focus World 41, 83 (2005).

16.

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, “Spectrally smooth supercontinuum from 530nm to 3µm in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14, 4928–4934 (2006). [CrossRef] [PubMed]

17.

J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Crystalline Solids 287, 401–404 (2001). [CrossRef]

18.

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002). [PubMed]

19.

T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, “Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation,” Lasers Surgery Medicine 38, 787–791 (2006). [CrossRef]

20.

A. Major, F. Yoshino, I. Nikolakakos, J. Aitchison, and P. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29, 602–604 (2004). [CrossRef] [PubMed]

21.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–680 (1986). [CrossRef]

22.

G. Merberg and J. Harrington, “Optical and mechanical properties of single-crystal sapphire optical fibers,” Appl. Opt. 32, 3201–3209 (1993). [CrossRef] [PubMed]

23.

R. Nubling and J. Harrington, “Optical properties of single-crystal sapphire fibers,” Appl. Opt. 36, 5934–5940 (1997). [CrossRef] [PubMed]

24.

S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281, 1113–1117 (2008). [CrossRef]

25.

G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).

26.

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800–6812 (2006). [CrossRef] [PubMed]

27.

M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).

28.

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed. (John Wiley and Sons, Inc., New Jersey, 2004).

29.

D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, “Dispersive wave blue-shift in supercontinuum generation,” Opt. Express 14, 11997–12007 (2006). [CrossRef] [PubMed]

30.

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004). [CrossRef] [PubMed]

31.

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2003). [CrossRef]

32.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901-1-4 (2001). [CrossRef] [PubMed]

33.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]

34.

W. Jia and W. M. Yen, “Raman scattering from sapphire fibers,” J. Raman Spectroscopy 20, 785–788 (1989). [CrossRef]

35.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Light. Tech. 23, 13–18 (2005). [CrossRef]

36.

Redrawn from http://optical-material.optical-components.com/

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 6, 2008
Revised Manuscript: March 5, 2008
Manuscript Accepted: March 7, 2008
Published: March 11, 2008

Citation
Jae Hun Kim, Meng-Ku Chen, Chia-En Yang, Jon Lee, Stuart (Shizhuo) Yin, Paul Ruffin, Eugene Edwards, Christina Brantley, and Claire Luo, "Broadband IR supercontinuum generation using single crystal sapphire fibers," Opt. Express 16, 4085-4093 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Quantum Electron. 13, 738-749 (2007). [CrossRef]
  2. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, and F. L. Terry, Jr, "Power scalable mid-infrared supercontinuum generation in ZBLAN Fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007). [CrossRef] [PubMed]
  3. I. T. Sorokina and K. L. Vodopyanov, Solid-state mid-infrared laser sources (Springer-Verlag, Berlin Heidelberg, 2003). [CrossRef]
  4. J. C. Knight, T. Birks, P. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  6. K. Tamura, E. Ippen, H. Haus, and L. Nelson, "77-fs pulse generation from a stretched pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993). [CrossRef] [PubMed]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. Fercher, W. Drexler, A. Apolonski, W. Wadsworth, J. Knight, P. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  8. I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  9. D. Jones, S. Diddams, J. Ranka, A. Stentz, R. Windeler, J. Hall, and S. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000). [CrossRef] [PubMed]
  10. S. Cundiff and J. Ye, "Colloquium: Femtosecond optical frequency combs," Rev. Mod. Phys. 75, 325-342 (2003). [CrossRef]
  11. Y. Takushima and K. Kikuchi, "10-GHz, over 20-channel multiwavelength source by slicing super-continuum spectrum generated by in normal-dispersion fiber," Photon. Technol. Lett. 11, 322-324 (1999). [CrossRef]
  12. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 26, 2089-2090 (2000). [CrossRef]
  13. R. S. Watt, C. F. Kaminski, and J. Hult, "Generation of supercontinuum radiation in conventional single-mode fibre and its application to broadband absorption spectroscopy," Appl. Phys. B 90, 47-53 (2008). [CrossRef]
  14. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, and F. J. Terry, Jr, "Mid-infrared supercontinuum generation to 4.5?m in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006). [CrossRef] [PubMed]
  15. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, and L. B. Shaw, "Chalcogenide optical fibers target mid-IR applications," Laser Focus World 41, 83 (2005).
  16. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russel, "Spectrally smooth supercontinuum from 530nm to 3?m in sub-centimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006). [CrossRef] [PubMed]
  17. J.-L. Adam, "Non-oxide glasses and their applications in optics," J. Non-Crystalline Solids 287, 401-404 (2001). [CrossRef]
  18. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russel, F. G. Omenetto, and A. J. Taylor "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002). [PubMed]
  19. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, "Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of Erbium: YAG laser radiation," Lasers Surg. Med. 38, 787-791 (2006). [CrossRef]
  20. A. Major, F. Yoshino, I. Nikolakakos, J. Aitchison, and P. Smith, "Dispersion of the nonlinear refractive index in sapphire," Opt. Lett. 29, 602-604 (2004). [CrossRef] [PubMed]
  21. R. S. Feigelson, "Pulling optical fibers," J. Cryst. Growth 79, 669-680 (1986). [CrossRef]
  22. G. Merberg and J. Harrington, "Optical and mechanical properties of single-crystal sapphire optical fibers," Appl. Opt. 32, 3201-3209 (1993). [CrossRef] [PubMed]
  23. R. Nubling and J. Harrington, "Optical properties of single-crystal sapphire fibers," Appl. Opt. 36, 5934-5940 (1997). [CrossRef] [PubMed]
  24. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Supercontinuum generation in single crystal sapphire fibers," Opt. Commun. 281, 1113-1117 (2008). [CrossRef]
  25. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  26. R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800-6812 (2006). [CrossRef] [PubMed]
  27. M. Bass, Handbook of Optics, Vol. II (McGraw-Hill, Inc., New York, 1995).
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., (John Wiley and Sons, Inc., New Jersey, 2004).
  29. D. R. Austin, C. M. de Sterke, B. J. Eggleton, and T. G. Brown, "Dispersive wave blue-shift in supercontinuum generation," Opt. Express 14, 11997-12007 (2006). [CrossRef] [PubMed]
  30. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). [CrossRef] [PubMed]
  31. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2003). [CrossRef]
  32. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87,203901-1-4 (2001). [CrossRef] [PubMed]
  33. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  34. W. Jia and W. M. Yen, "Raman scattering from sapphire fibers," J. Raman Spectroscopy 20, 785-788 (1989). [CrossRef]
  35. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005). [CrossRef]
  36. Redrawn from http://optical-material.optical-components.com/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited