OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 8 — Apr. 14, 2008
  • pp: 5444–5452
« Show journal navigation

Designs for optical cloaking with high-order transformations

Wenshan Cai, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations


Optics Express, Vol. 16, Issue 8, pp. 5444-5452 (2008)
http://dx.doi.org/10.1364/OE.16.005444


View Full Text Article

Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent advances in metamaterial research have provided us a blueprint for realistic cloaking capabilities, and it is crucial to develop practical designs to convert concepts into real-life devices. We present two structures for optical cloaking based on high-order transformations for TM and TE polarizations respectively. These designs are possible for visible and infrared wavelengths. This critical development builds upon our previous work on nonmagnetic cloak designs and high-order transformations.

© 2008 Optical Society of America

1. Introduction

Cloaking (or being invisible) is a longtime dream that may date back to the very beginning of human civilization. In the last few years, this dream moves one step closer to reality, thanks to various schemes proposed to control and manipulate electromagnetic waves in unprecedented ways [1–6

1. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027–3059 (2006). [CrossRef]

]. From among these methods, the transformation approach, which generalized a similar idea on cloaking of thermal conductivity [7

7. A. Greenleaf, M. Lassas, and G. Uhlmann, “Anisotropic conductivities that cannot be detected by EIT,” Physiol. Meas. 24, 413–419 (2003). [CrossRef] [PubMed]

, 8

8. Y. Benveniste and T. Miloh, “Neutral inhomogeneities in conduction phenomena,” J. Mech. Phys. Solids 47, 1873–1892 (1999). [CrossRef]

], has generated enormous interest [9–12

9. A. Hendi, J. Henn, and U. Leonhardt, “Ambiguities in the scattering tomography for central potentials,” Phys. Rev. Lett. 97, 073902 (2006). [CrossRef] [PubMed]

], partially because of its similarity to the mythological version of cloak: a closed surface is created which renders arbitrary objects within its interior invisible to detection. The constitutive parameters of the cloak are determined by the specific form of the spatial transformation. They are usually anisotropic with gradient requirements that are only possible using artificially engineered structures, such as the previously demonstrated microwave cloak [13

13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]

].

The word “invisible” naturally implies the inaccessibility of an object to waves with wavelengths perceivable by human eyes, which are so-called “visible light”. Unfortunately, an electromagnetic cloak working at optical frequencies has yet to be demonstrated, although a conceptual design with reduced non-magnetic parameters has been discussed by the present authors [14

14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

]. Recently we also proposed non-magnetic cloaks based on high-order transformations [15

15. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]

], which may provide not only better cloaking performance, but also more flexibility in determining the properties of constitutive materials. A rigorous analysis of high-order cloaks was presented afterwards in [16

16. R. Weder, “A rigorous analysis of high-order electromagnetic invisibility cloaks,” J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]

]. As a critical development of our recent work [14

14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

, 15

15. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]

], in this paper we propose two practical designs of optical cloaks based on high-order transformations. Specifically, we demonstrate i) a non-magnetic cylindrical cloaking system for TM incidence (magnetic field polarized along the cylindrical axis) which consists of a layered metal-dielectric without any variation in either material or structure along the vertical direction; ii) a magnetic cylindrical cloak for TE incidence (electric field polarized parallel to axis) utilizing Mie resonance in periodic rod-shaped high-permittivity materials. In each scheme, through careful design of the geometry, the anisotropy and gradient of material properties in the cloaking shell fits remarkably well to the intended transformation.

2. Material properties in cylindrical cloaks

For a cloak in the cylindrical geometry, a coordinate transformation function on r=g(r′) from (r′,θ′,z′) to (r,θ,z) is used to compress the region r′≤b into a concentric shell of arb, and the permittivity and permeability tensors required for an exact cloak can be determined as [15

15. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]

]:

εr=μr=(r'r)g(r')r';εθ=μθ=1εr;εz=μz=(r'r)[g(r')r']1
(1)

For the standard states of incident polarization, the requirement in Eq. (1) can be relaxed such that only three of the six components are relevant. For example, for TE (TM) polarization, only εz, μr and μθ (μz, εr and εθ) enter into Maxwell’s equations. Moreover, the parameters can be further simplified to form reduced parameters which are more realistic for practical applications. Since the trajectory of the waves is determined by the cross product components of the ε and μ tensors instead of the two tensors individually, the cloaking performance is sustained as long as nθ=εzμr and nr=εzμθ ( nθ=μzεr and nr=μzεθ ) are kept the same as those determined by values in Eq. (1). This technique results in a specific set of reduced parameters which allow for a permeability gradient along only the radial direction for the TE mode [13

13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]

]:

μr=(r'r)2[g(r')r']2;μθ=1;εz=[g(r')r']2
(2)

and can be purely non-magnetic for the TM mode [14

14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

]:

εr=(r'r)2;εθ=[g(r')r']2;μz=1
(3)

3. Optical cloak with high-order transformations I: TM mode

First we focus on the non-magnetic cloak in the TM mode with parameters given in Eq. (3). In this case, the design of cloak is essentially to produce the required gradient in εr and εθ using readily available materials. Apparently, a cloak cannot consist of only a single-constituent material, because a spatial variation in material properties is critical to building a cloak. To start the design, we first examine the overall flexibility we can achieve in the effective permittivity of a general two-phase composite medium. When an external field interacts with a composite consisting of two elements with permittivity of ε1 and ε2 respectively, minimal screening occurs when all internal boundaries between the two constituents are parallel to the electric field, and maximal screening happens when all boundaries aligned perpendicular to the field. These two extremes are possible in an alternating layered structure, provided that the thickness of each layer is much less than the wavelength of incidence [17

17. D. E. Aspnes, “Optical-Properties of Thin-Films,” Thin Solid Films 89, 249–262 (1982). [CrossRef]

]. In this case the two extreme values of the effective permittivity can be approximated as

Fig. 1. The principle of constructing a non-magnetic cloak in the TM mode with high-order transformations. The thick solid and dashed lines represent the two Wiener bounds ε (f) and ε (f), respectively. Basic material properties for this calculation: ε1=εAg=-10.6+0.14i and ε2=εSiO2=2.13 at λ=532 nm.
ε=fε1+(1f)ε2;ε=ε1ε2(fε2+(1f)ε1)
(4)

where f and 1-f denote the volume fractions of components 1 and 2, and the subscripts ‖ and ⊥ indicate the cases with electric field polarized parallel and perpendicular to the interfaces of the layers, respectively. Such layered structures have been studied extensively in recent years for various purposes, especially in sub-diffraction imaging for both the near field and the far zone [18–23

18. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

].

The two extrema in Eq. (4) are called the Wiener bounds to permittivity, which set the absolute bound on all possible values of the effective permittivity of a two-phase composite [24

24. O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).

, 25

25. D. E. Aspnes, “Bounds on Allowed Values of the Effective Dielectric Function of 2-Component Composites at Finite Frequencies,” Phys. Rev. B 25, 1358–1361 (1982). [CrossRef]

]. In realistic composites, more strict limits, for example those from the spectral representation developed by Bergman and Milton [26

26. D. J. Bergman, “Exactly Solvable Microscopic Geometries and Rigorous Bounds for the Complex Dielectric-Constant of a 2-Component Composite-Material,” Phys. Rev. Lett. 44, 1285–1287 (1980). [CrossRef]

, 27

27. G. W. Milton, “Bounds on the Complex Dielectric-Constant of a Composite-Material,” Appl. Phys. Lett. 37, 300–302 (1980). [CrossRef]

], might apply in addition to the Wiener bounds, but Eq. (4) nonetheless provides a straightforward way to evaluate the accessible permittivity in a composite with given constituent materials. The Wiener bounds can be illustrated on a complex ε-plane with the real and imaginary parts of ε being the x and y axis, respectively. In this plane, the low-screening bound in Eq. (4a) corresponds to a straight line between ε1 and ε2, and the high-screening bound in Eq. (4b) defines an arc which is part of the circle determined by the three points ε1, ε2 and the origin.

The required material properties for the cloak in Eq. (3) indicates that, for a non-magnetic cylindrical cloak with any transformation function, εr varies from 0 at the inner boundary of the cloak (r=a) to 1 at the outer surface (r=b), while εθ is a function of r with varying positive value, except for the linear transformation case where ∂g(r′)∂r′ is a constant. Now we can evaluate the possibility of fulfilling the required parameters in Eq. (3) based on alternating metal-dielectric slices whose properties are estimated by Eq. (4). With phase 1 being a metal (ε1=εm<0) and phase 2 representing a dielectric (ε2=εd>0), the desired material properties of the cloak are only possible when the slices are within the r-z plane of the cylindrical coordinates. In this case εr and εθ correspond to ε and ε in Eq. (4), respectively. This scenario is illustrated in Fig. 1. The thick solid and dashed lines represent the two Wiener bounds ε (f) and ε (f) respectively. The constituent materials used for the calculation are silver and silica at a green light wavelength of 532 nm. The pair of points on the bounds with the same filling fraction are connected with a straight line for clarification purposes. When εr changes between 0 and 1, the value of εθ varies accordingly as shown by the arrow between the two thin dashed lines. Therefore, the construction of a non-magnetic cloak requires that the relationship between the two quantities ε and ε (as functions of f) within the range shown in Fig. 1 fits the material properties given in Eq. (3) for a particular transformation function r=g(r′). Another attractive feature of the proposed scheme is the minimal loss factor. As shown in Fig. 1, the loss feature described by the imaginary part of the effective permittivity is on the order of 0.01, much smaller than that of a pure metal or any resonant metal-dielectric structures. A schematic of the proposed structure consisting of interlaced metal and dielectric slices is illustrated in Fig. 2.

Fig. 2. Schematic of a cylindrical non-magnetic cloak with high-order transformations for TM polarization.

Mathematically, for a preset operational wavelength we seek a transformation together with the cylindrical shape factor a/b that fulfills the following equation:

εmεd(g(r')r')2+(r'g(r'))2(εm+εd)=0
(5)

and

g(0)=a;g(b)=b;g(r')r'>0
(6)

There does not exist an exact analytical solution to the equations above. However, we may use polynomial functions to approach a possible solution. More specifically, a quadratic function in the following form

r=g(r')=[1ab+p(r'b)]r'+a
(7)

with |p|<(b-a)/b 2 can serve as a good candidate for an approximate solution to Eq. (5).

Table 1. Approximate quadratic transformations and materials for constructing a cloak with alternating slices

table-icon
View This Table

Such a transformation automatically satisfies the boundary and monotonicity requirements in Eq. (6), and it is possible to fulfill Eq. (5) with minimal deviation when a proper shape factor is chosen. In Table 1 we provide transformations, materials and geometries for non-magnetic cloaks designed for several important frequency lines across the visible range including 488 nm (Ar-ion laser), 532 nm (Nd:YAG laser), 589.3 nm (sodium D-line), and 632.8 nm (He-Ne laser). In the calculations, the permittivity of silver is taken from well accepted experimental data [28

28. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

], and the dielectric constant of silica is from the tabulated data in [29

29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).

]. Note that the same design and transformation work for all similar cylindrical cloaks with the same shape factor a/b. When the approximate quadratic function is fixed for a given wavelength, the filling fraction function f(r) is determined by the following equation:

f(r)=Re(εd)(g1(r)r)2Re(εdεm)
(8)
Fig. 3. Anisotropic material parameters εr and εθ of a non-magnetic cloak made of silversilica alternating slices corresponding to the third row (λ=532 nm) in Table 1. The solid lines represent the exact parameters determined by Eq. (2), and the diamond markers show the parameters on the Wiener’s bounds given by Eq. (4).

As an example, in Fig. 3 we show the anisotropic material properties of a non-magnetic cloak corresponding to the λ=532 nm case in Table 1. Our calculation shows that with the approximate quadratic transformation, the effective parameters εr and εθ obtained with the Wiener bounds in Eq. (4) fit with the exact parameters required for this transformation by Eq. (2) remarkably well, with the average deviation of less than 0.5%.

Compared to the previously designed cloak in [14

14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

] which requires thin metal needles embedded in a dielectric host following a pre-designed distribution, the fabrication feasibility of the newly proposed design is obvious because such vertical wall-like structures are compatible with mature fabrication techniques like direct deposition and direct etching.

4. Optical cloak with high-order transformations II: TE mode

Fig. 4. Schematic of a cylindrical non-magnetic cloak with high-order transformations for TE polarization.
εSiC=ε[ω2ωL2+iγω][ω2ωT2+iγω]
(9)

where =6.5, ωL=972 cm -1, ωT=796 cm -1 and γ=5 cm -1. On the high-frequency side, the dielectric function is strongly negative, which makes its optical response similar to that of metals and has been utilized in applications like a mid-infrared superlens [31

31. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468–478 (2006). [CrossRef]

, 32

32. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595–1595 (2006). [CrossRef] [PubMed]

]. At frequencies lower than the resonance frequency, the permittivity can be strongly positive, which makes SiC an attractive candidate for producing high-permittivity Mie resonators at the mid-infrared wavelength range [33

33. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]

].

SiC structures can be used to build mid-infrared cloaking devices in different styles. For example, we may consider using the needle-based structure detailed in [14

14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

] for the TM mode, where needles made of a low-loss negative-ε polaritonic material like SiC or TiO2 are embedded in an IR transparent dielectric like ZnS. The non-magnetic cloak using alternating slices structure as proposed in this paper provides a more realistic design. With SiC as the negative-ε material and BaF2 as the positive-ε slices with material properties given in [29

29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).

], we can find the appropriate transformation function and shape factor that fulfills the material property requirements at a preset wavelength. The result for λ=11.3 µm (CO2 laser range) is shown in the last row of Table 1.

Now we consider a cylindrical cloak for the TE mode with the required material properties given in Eq. (2), which indicates that a gradient in the magnetic permeability along the radial direction is necessary. To be more specific, µr varies from 0 at the inner boundary (r=a) to [∂g(r′)/∂r′]2 at the outer surface (r=b), while the required εz changes accordingly following the function [∂g(r′)/∂r′]-2. The magnetic requirement may be accomplished using metal elements like split-ring resonators, coupled nanostrips or nanowires. However, such plasmonic structures inevitably exhibit a high loss, which is detrimental to the cloaking performance. A SiC based structure provides an all-dielectric route to a magnetic cloak for the TE mode due to the Mie resonance in a subwavelength SiC unit.

Meta-magnetic responses and a negative index of refraction in structures made from high-permittivity materials have been studied extensively in recently years [33–37

33. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]

]. Magnetic resonance in a rod-shaped high-permittivity particle can be excited by different polarizations of the external field with respect to the rod axis. When a strong magnetic resonance and an effective permeability substantially distinct from 1 are desired, the rod should to be aligned parallel to the electric field to assure the maximum possible interaction between the rod and the external field. In our conceptual design of a cylindrical cloak for the TE mode, the desired radial permeability has values of less than (but close to) 1, and resonance behavior in the effective permittivity εz should be avoided for a minimal loss. Therefore, with the electrical field polarized along the z axis of the cylindrical system, we arrange the SiC rods along the r axis and form an array in the θ-z plane. The proposed structure is depicted in Fig. 4, where arrays of SiC wires along the radial direction are placed between the two surfaces of the cylindrical cloak.

Fig. 5. The required and the calculated effective parameters μr and εz for a cylindrical TE cloak with SiC wire arrays for λ=13.5 µm.

The effective permeability of the system can be estimated as follows using the approach in [34

34. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter. 14, 4035–4044 (2002). [CrossRef]

]:

μr=2kL12L1J1(kL1)tJ1(kt)+a0tH1(1)(kt)a0L1H1(1)(kL1)+c0tJ1(nkt)nJ0(kL22)a0H0(1)(kL22)
(10)

where h and φ represent the periodicities along the z and θ directions respectively, t denotes the radius of each wire, n=εSiC is the refractive index, k=2π/λ0 denotes the wave vector, L1=hrφπ and L2=(h+rφ)2 represent the two effective unit sizes based on area and perimeter estimations respectively.

a 0=[nJ 0(nkt)J 1(kt)-J 0(kt)J 1(nkt)]/[nJ 0(nkt)H (1) 1(kt)-H (1) 0(kt)J 1(nkt)] and c 0=[J 0(kt)-a 0 H (1) 0(kt)]/J 0(nkt) are the scattering coefficients, and the Bessel functions in the equation follow the standard notations. The permittivity along the z direction is well approximated using Maxwell-Garnett method [34

34. S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter. 14, 4035–4044 (2002). [CrossRef]

]. In the design we choose the appropriate transformation, geometry and operational wavelength such that the calculated effective parameters μr and εz follow what is required by Eq. (2) with tolerable deviations. In Fig. 5 we plot the required and the calculated μr and εz for a TE cloak at λ=13.5 µm. The parameters used for this calculation are a=15 µm, a/b=0.35, t=1.2 µm, h=2.8 µm, φ=10.6°, and the p coefficient in the quadratic transformation is 0.5a/b 2. We observe very good agreement between the required values and the calculated ones based on analytical formulae, and the imaginary part in the effective permeability is less than 0.06. This computation verifies the feasibility of the proposed cloaking system based on SiC wire arrays for the TE polarization.

5. Conclusions

Acknowledgments

The authors would like to thank our colleague Xingjie Ni for his help with 3D illustrations. This work was supported in part Army Research Office grant W911NF-04-1-0350 and by ARO-MURI award 50342-PH-MUR.

References and links

1.

G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027–3059 (2006). [CrossRef]

2.

N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15, 6314–6323 (2007). [CrossRef] [PubMed]

3.

A. Alu and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. B 72, 016623 (2005). [CrossRef]

4.

M. G. Silveirinha, A. Alu, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. B 75, 036603 (2007). [CrossRef]

5.

D. A. B. Miller, “On perfect cloaking,” Opt. Express 14, 12457–12466 (2006). [CrossRef] [PubMed]

6.

F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005). [CrossRef] [PubMed]

7.

A. Greenleaf, M. Lassas, and G. Uhlmann, “Anisotropic conductivities that cannot be detected by EIT,” Physiol. Meas. 24, 413–419 (2003). [CrossRef] [PubMed]

8.

Y. Benveniste and T. Miloh, “Neutral inhomogeneities in conduction phenomena,” J. Mech. Phys. Solids 47, 1873–1892 (1999). [CrossRef]

9.

A. Hendi, J. Henn, and U. Leonhardt, “Ambiguities in the scattering tomography for central potentials,” Phys. Rev. Lett. 97, 073902 (2006). [CrossRef] [PubMed]

10.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]

11.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]

12.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794–9804 (2006). [CrossRef] [PubMed]

13.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]

14.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]

15.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]

16.

R. Weder, “A rigorous analysis of high-order electromagnetic invisibility cloaks,” J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]

17.

D. E. Aspnes, “Optical-Properties of Thin-Films,” Thin Solid Films 89, 249–262 (1982). [CrossRef]

18.

S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).

19.

D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys. 7, 162 (2005). [CrossRef]

20.

P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]

21.

S. M. Feng and J. M. Elson, “Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms,” Opt. Express 14, 216–221 (2006). [CrossRef] [PubMed]

22.

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]

23.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006). [CrossRef]

24.

O. Wiener, “Die Theorie des Mischkorpers fur das Feld der stationaren Stromung,” Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509–604 (1912).

25.

D. E. Aspnes, “Bounds on Allowed Values of the Effective Dielectric Function of 2-Component Composites at Finite Frequencies,” Phys. Rev. B 25, 1358–1361 (1982). [CrossRef]

26.

D. J. Bergman, “Exactly Solvable Microscopic Geometries and Rigorous Bounds for the Complex Dielectric-Constant of a 2-Component Composite-Material,” Phys. Rev. Lett. 44, 1285–1287 (1980). [CrossRef]

27.

G. W. Milton, “Bounds on the Complex Dielectric-Constant of a Composite-Material,” Appl. Phys. Lett. 37, 300–302 (1980). [CrossRef]

28.

P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

29.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).

30.

W. G. Spitzer, D. Kleinman, and D. Walsh, “Infrared Properties of Hexagonal Silicon Carbide,” Phys. Rev. 113, 127–132 (1959). [CrossRef]

31.

D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468–478 (2006). [CrossRef]

32.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595–1595 (2006). [CrossRef] [PubMed]

33.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]

34.

S. O’Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter. 14, 4035–4044 (2002). [CrossRef]

35.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85, 543–545 (2004). [CrossRef]

36.

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]

37.

L. Peng, L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]

OCIS Codes
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Metamaterials

History
Original Manuscript: February 11, 2008
Revised Manuscript: March 31, 2008
Manuscript Accepted: April 1, 2008
Published: April 3, 2008

Citation
Wenshan Cai, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-5452 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5444


Sort:  Year  |  Journal  |  Reset  

References

  1. G. W. Milton, and N. A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006). [CrossRef]
  2. N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express 15, 6314-6323 (2007). [CrossRef] [PubMed]
  3. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. B 72, 016623 (2005). [CrossRef]
  4. M. G. Silveirinha, A. Alu, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. B 75, 036603 (2007). [CrossRef]
  5. D. A. B. Miller, "On perfect cloaking," Opt. Express 14, 12457-12466 (2006). [CrossRef] [PubMed]
  6. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, "Tunneling mechanism of light transmission through metallic films," Phys. Rev. Lett. 95, 067403 (2005). [CrossRef] [PubMed]
  7. A. Greenleaf, M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas. 24, 413-419 (2003). [CrossRef] [PubMed]
  8. Y. Benveniste and T. Miloh, "Neutral inhomogeneities in conduction phenomena," J. Mech. Phys. Solids 47, 1873-1892 (1999). [CrossRef]
  9. A. Hendi, J. Henn, and U. Leonhardt, "Ambiguities in the scattering tomography for central potentials," Phys. Rev. Lett. 97, 073902 (2006). [CrossRef] [PubMed]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  11. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  12. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006). [CrossRef] [PubMed]
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  14. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics 1, 224-227 (2007). [CrossRef]
  15. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  16. R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008). [CrossRef]
  17. D. E. Aspnes, "Optical-Properties of Thin-Films," Thin Solid Films 89, 249-262 (1982). [CrossRef]
  18. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  19. D. Schurig, and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New J. Phys. 7, 162 (2005). [CrossRef]
  20. P. A. Belov, and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B 73, 113110 (2006). [CrossRef]
  21. S. M. Feng, and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express 14, 216-221 (2006). [CrossRef] [PubMed]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  23. A. Salandrino, and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phys. Rev. B 74, 075103 (2006). [CrossRef]
  24. O. Wiener, "Die Theorie des Mischkorpers fur das Feld der stationaren Stromung," Abh. Math.-Phys. Klasse Koniglich Sachsischen Des. Wiss. 32, 509-604 (1912).
  25. D. E. Aspnes, "Bounds on Allowed Values of the Effective Dielectric Function of 2-Component Composites at Finite Frequencies," Phys. Rev. B 25, 1358-1361 (1982). [CrossRef]
  26. D. J. Bergman, "Exactly Solvable Microscopic Geometries and Rigorous Bounds for the Complex Dielectric-Constant of a 2-Component Composite-Material," Phys. Rev. Lett. 44, 1285-1287 (1980). [CrossRef]
  27. G. W. Milton, "Bounds on the Complex Dielectric-Constant of a Composite-Material," Appl. Phys. Lett. 37, 300-302 (1980). [CrossRef]
  28. P. B. Johnson, and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1997).
  30. W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared Properties of Hexagonal Silicon Carbide," Phys. Rev. 113, 127-132 (1959). [CrossRef]
  31. D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006). [CrossRef]
  32. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595-1595 (2006). [CrossRef] [PubMed]
  33. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett. 99, 107401 (2007). [CrossRef] [PubMed]
  34. S. O'Brien and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. Condens. Matter. 14, 4035-4044 (2002). [CrossRef]
  35. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85, 543-545 (2004). [CrossRef]
  36. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, "Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies," Phys. Rev. B 72, 193103 (2005). [CrossRef]
  37. L. Peng, L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett. 98, 157403 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited