OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 10725–10730
« Show journal navigation

227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser

Cyrill R. E. Baer, Christian Kränkel, Oliver H. Heckl, Matthias Golling, Thomas Südmeyer, Rigo Peters, Klaus Petermann, Günter Huber, and Ursula Keller  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 10725-10730 (2009)
http://dx.doi.org/10.1364/OE.17.010725


View Full Text Article

Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the first mode-locked thin disk laser based on Yb:LuScO3. This new mixed gain material combines the emission peaks of two sesquioxides, leading to a gain bandwidth of more than 20 nm. We achieve 7.2 W average output power in 227-fs pulses, which is shorter than for any previous ultrafast thin disk laser. The output power was limited by a growth defect near the center of the thin disk.

© 2009 OSA

1. Introduction and motivation

The combination of the thin disk laser concept [1

1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

,2

2. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]

] with semiconductor saturable absorber mirrors (SESAMs) [3

3. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]

] resulted in compact mode-locked lasers with unprecedented power levels and pulse energies [4

4. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). [CrossRef]

]. Ultrafast thin disk lasers reached average powers of up to 80 W [5

5. E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics - a powerful combination,” Laser Phys. Lett. 1(2), 82–85 (2004). [CrossRef]

], which is higher than for any other mode-locked laser source. Pulse energies as high as 11.3 µJ [6

6. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008). [CrossRef] [PubMed]

] were generated in a cavity geometry using the thin disk as a simple folding mirror and 25.9 μJ were achieved in an active multi-pass cavity with 13 reflections on the disk [7

7. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 20530–20539 (2008). [CrossRef] [PubMed]

]. These results were obtained with the well established gain material Yb:YAG (Yb:Y3Al5O12). Unfortunately, its limited gain bandwidth does not support pulse durations shorter than 700 fs in an efficient high-power mode-locked thin disk laser. This pulse duration is too long for many application areas. An important example is high field science, which previously relied on complex amplifier systems operating at low repetition rates. The multi-megahertz repetition rate of ultrafast thin disk lasers can substantially shorten measurement times and increase signal-to-noise ratio [4

4. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). [CrossRef]

]. Ultrafast thin disk lasers are promising for driving high-harmonic generation at high average power levels. Such table-top multi-megahertz VUV/XUV sources with high photon flux would have a high impact in fields as diverse as medicine, biology, chemistry, physics and materials science. So far, high field experiments with Yb:YAG thin disk lasers used external pulse compression [8

8. E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, U. Keller, K. Furusawa, J. C. Baggett, T. M. Monro, and D. J. Richardson, “32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression,” presented at Advanced Solid-State Photonics (ASSP), (Vienna, Austria, 2005), paper TuA3.

,9

9. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003). [CrossRef] [PubMed]

]. Achieving shorter pulses directly from a thin disk laser by employing new gain materials with larger bandwidths is a promising alternative. The shortest pulse duration previously demonstrated with an ultrafast thin disk laser was realized with the Yb:KYW (Yb:KY(WO4)2) gain material, which provides an emission bandwidth of about 25 nm but also a strongly curved spectrum at the emission peak [10

10. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]

]. At a pump power of 100 W, the laser generated 22 W average output power in 240 fs pulses. The laser wavelength was tuned off the emission maximum with a prism and a knife edge, which flattened the gain spectrum. Without intra-cavity spectral shaping, the laser generated 400 fs pulses [11

11. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser,” Opt. Lett. 27(13), 1162–1164 (2002). [CrossRef]

]. Despite these promising first results, which were already published in 2002, power scaling with this gain material is not yet demonstrated. Unfortunately, it is challenging to manufacture high quality thin disks because the host material KYW shows a strong anisotropy in terms of thermo-optical and mechanical properties. This is typical for all monoclinic double tungstate crystals and challenges stable fundamental mode operation at high pump power levels [12

12. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and Nonlinear Laser Properties of the χ(3)-Active Monoclinic α-KY(WO4)2 Crystals,” Crystallogr. Rep. 46(4), 665–672 (2001). [CrossRef]

,13

13. S. Biswal, S. P. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate,” Appl. Opt. 44(15), 3093–3097 (2005). [CrossRef] [PubMed]

].

2. Experimental setup

Our Yb(3%):LuScO3 crystal was grown by the heat exchanger method (HEM) at the Institute of Laser-Physics in Hamburg, Germany [26

26. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008). [CrossRef]

]. The only available disk has a thickness of 250 µm. It has a highly reflective coating for both pump and laser wavelength on the side which is soldered onto a water-cooled heat sink. The other side of the disk has an antireflective coating for the same spectral range. Additionally, the disk has a wedge of 0.1° in order to reduce the effect of residual reflections into the cavity mode, which can make mode-locked operation unstable. The crystal was pumped with a fiber-coupled diode laser with an emission bandwidth of 3 nm at the center wavelength of 976 nm. Our pump module is set up for 24 passes through the gain medium and a pump spot diameter on the disk of 1.2 mm. The fraction of absorbed pump power in this configuration was estimated to be > 98%. The experimental setup of the laser resonator is shown schematically in Fig. 2
Fig. 2 (color online) Experimental setup of the Yb:LuScO3 thin disk (TD) laser cavity (not to scale). Two dispersive mirrors introduce a negative GDD of ≈-2200 fs2 per roundtrip. The Brewster plate has a thickness of 5 mm. Cavity dimensions: SESAM-R1 = 34.9 cm, R1-R2 = 42.6 cm, R2-TD = 47.7 cm, TD-R3 = 50.1 cm, R3-OC = 49.4 cm. HR: curved highly reflective mirror, DM: dispersive mirror, OC: output coupler, SESAM: semiconductor saturable absorber mirror.
.

The Yb:LuScO3 laser head was used as a folding mirror inside a standing-wave cavity. We placed a SESAM as the cavity end mirror to start and stabilize passive modelocking. It consisted of a 30-pair GaAs/AlAs Bragg mirror with two InGaAs quantum well absorber layers placed in the antinodes of the antiresonant standing-wave pattern. Additionally, the cavity contained two dispersive mirrors introducing a total of ≈-2200 fs2 of negative group delay dispersion (GDD) per cavity roundtrip. A 5-mm thick fused silica plate inserted at Brewster’s angle ensured linear polarization of the laser output and was accountable for the self-phase modulation (SPM) required in soliton mode-locked lasers [27

27. F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]

]. In order to optimize the pulse duration, the amount of nonlinearity could be controlled by moving this Brewster plate near the output coupler along the axis of the diverging beam. The amount of SPM scales inversely proportional to the cross section of the laser beam in the Brewster plate. The total length of the resonator was 2.25 m, corresponding to a repetition rate of 66.5 MHz. We used a SESAM with a saturation fluence of 61 μJ/cm2, a modulation depth of 1.47% and non-saturable losses of ~0.2% measured at 1030 nm [28

28. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]

].

3. Experimental results

We obtained self-starting modelocking with a pulse duration as short as 227 fs using a 4.2% output coupler. The autocorrelation trace and optical spectrum of these pulses are shown in Fig. 3
Fig. 3 (color online) Normalized autocorrelation (left) and optical spectrum (right) of the measured output beam (solid blue lines) with fit curves assuming ideal sech 2 pulses (dashed red lines). The shortest pulses have a duration of 227 fs and a spectral bandwidth of 5.2 nm centered near 1041 nm.
. The spectral bandwidth of 5.2 nm centered near 1041 nm indicates nearly transform limited sech 2-pulses with a time-bandwidth product of 0.329 (ideal: 0.315). The maximumoutput power was 7.2 W with 34 W of pump power, resulting in an optical-to-optical efficiency η opt of 21%. The energy per pulse was 0.11 µJ and the peak power 0.42 MW. The M 2-value was measured to be 1.4. We verified single-pulse operation with a long-range autocorrelation of more than 60 ps and a sampling oscilloscope with a temporal resolution of < 20 ps. This is important because stable modelocking can also be achieved with multiple pulses simultaneously oscillating in the cavity. This mode of operation is often difficult to detect using only short-range autocorrelation, optical and RF-spectrum [29

29. F. X. Kärtner, J. Aus der Au, and U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998). [CrossRef]

].

In a slightly different configuration and with a higher output coupling of 5.2% we obtained an output power of up to 10.1 W with 39 W of pump power. The pulse duration was 321 fs and the pulse energy 0.15 µJ. The spectral bandwidth of 3.9 nm corresponds to a nearly transform-limited time-bandwidth product of 0.342. The longer pulses are expected with a higher output coupling because the soliton phase shift decreases [27

27. F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]

,30

30. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001). [CrossRef]

]. The optical-to-optical efficiency of 26% is similar to other high power mode-locked laser systems with potassium tungstates as active media [11

11. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser,” Opt. Lett. 27(13), 1162–1164 (2002). [CrossRef]

,31

31. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006). [CrossRef] [PubMed]

,32

32. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008). [CrossRef] [PubMed]

], but clearly below the η opt of 43% obtained with Yb:Lu2O3 [18

18. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15(25), 16966–16971 (2007). [CrossRef] [PubMed]

]. From Fig. 4
Fig. 4 (color online) Output power versus incident pump power using an outcoupling mirror with T = 5.2% for the laser wavelength. Stable soliton modelocking is obtained at 30 W pump power with a slope efficiency (η slope) of 39%.
we can determine a slope efficiency of 39% for the mode-locked Yb:LuScO3 laser. Thus, at higher pump power we will observe a significant increase of the overall optical-to-optical efficiency in our setup.

The average output power in mode-locked operation was most likely limited by growth defects in the pumped area of the disk. While at medium pump powers the transverse output beam was nearly diffraction limited, at higher pump powers the mode deformed and the M 2-value increased. Modelocking became unstable at 40 W of pump power. This can be explained by the onset of higher order transverse modes, which destabilize the pulse formation. Nomarski interference microscopy revealed several grain boundaries (Fig. 5
Fig. 5 Nomarski interference microscope photography of the Yb:LuScO3 disk used in the experiments. The white circle corresponds to the pump spot with a diameter of 1.2 mm. The grain boundaries are invisible under a normal microscope.
) in the pumped area of the only available disk, which is marked with the white circle.

Unfortunately, the pump module does not allow to shift the location of the pump spot on the disk. This disk was made out of the first boule ever grown of this material and we expect that disks of better quality can be fabricated from boules grown under optimized conditions in the future. Even with this disk the current limitation in output power could have been prevented by soldering the crystal at a slightly different position onto the heat sink. However, as the grain boundaries were invisible under normal light, we were not aware of this issue. Attempts to shift the disk by re-melting the solder were not successful. We believe that the melting point was increased considerably because the metal coating of the disk’s back-side partially alloyed with the indium-tin-solder.

4. Conclusion and outlook

We presented the first mode-locked Yb:LuScO3 thin disk laser. It delivered the shortest pulses obtained from a mode-locked thin disk laser so far. The nearly transform limited pulses had a duration of 227 fs at 7.2 W of average output power. In a modified configuration we achieved an output power of up to 10.1 W and pulses with a duration of 321 fs. The average output power was limited by growth defects in the only available disk. We expect that further improvements of the growth process will result in better quality disks. Nevertheless the current result clearly demonstrates the potential of Yb:LuScO3 thin disk lasers for efficient high average power operation and pulse durations in the 200-fs-regime.

Acknowledgements

We would like to acknowledge financial support by the Swiss National Science Foundation (SNSF).

References and links

1.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).

2.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]

3.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]

4.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). [CrossRef]

5.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics - a powerful combination,” Laser Phys. Lett. 1(2), 82–85 (2004). [CrossRef]

6.

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008). [CrossRef] [PubMed]

7.

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 20530–20539 (2008). [CrossRef] [PubMed]

8.

E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, U. Keller, K. Furusawa, J. C. Baggett, T. M. Monro, and D. J. Richardson, “32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression,” presented at Advanced Solid-State Photonics (ASSP), (Vienna, Austria, 2005), paper TuA3.

9.

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003). [CrossRef] [PubMed]

10.

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]

11.

F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser,” Opt. Lett. 27(13), 1162–1164 (2002). [CrossRef]

12.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and Nonlinear Laser Properties of the χ(3)-Active Monoclinic α-KY(WO4)2 Crystals,” Crystallogr. Rep. 46(4), 665–672 (2001). [CrossRef]

13.

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate,” Appl. Opt. 44(15), 3093–3097 (2005). [CrossRef] [PubMed]

14.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “High Power Laser Operation of Sesquioxides Yb:Lu2O3 and Yb:Sc2O3,” presented at Conference on Lasers and Electro-Optics, (San Jose, USA, 2008), paper CTuKK4.

15.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]

16.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef] [PubMed]

17.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007). [CrossRef] [PubMed]

18.

S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15(25), 16966–16971 (2007). [CrossRef] [PubMed]

19.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “63-W Average Power from Femtosecond Yb:Lu2O3 Thin Disk Laser,” presented at Conference on Lasers and Electro-Optics (Europe), (Munich, Germany, 2009), paper CA2.3.

20.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009). [CrossRef] [PubMed]

21.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85(4), 581–584 (2006). [CrossRef]

22.

C. Cascales, A. Méndez Blas, M. Rico, V. Volkow, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: Relationship with the structural local disorder,” Opt. Mater. 27(11), 1672–1680 (2005). [CrossRef]

23.

R. Peters, K. Beil, C. Kränkel, K. Schenk, K. Petermann, and G. Huber, “Ytterbium-doped Sesquioxides for High-Power Solid-State Lasers: Recent Progress in Crystal Growth and Laser Operation,” presented at Conference on Lasers and Electro-Optics (Europe), (Munich, Germany, 2009), paper CA9.1.

24.

R. Peters, K. Petermann, and G. Huber, “A New Mixed Sesquioxide Yb:LuScO3: Spectroscopic Properties and Highly Efficient Thin-Disk Laser Operation,” presented at Advanced Solid-State Photonics (ASSP), (Denver, USA, 2009), paper MC4.

25.

A. Schmidt, X. Mateos, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, A. Klehr, and G. Erbert, “Passively Mode-Locked Yb:LuScO3 Oscillator,” presented at Advanced Solid-State Photonics, (Denver, USA, 2009), paper MB12.

26.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008). [CrossRef]

27.

F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]

28.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]

29.

F. X. Kärtner, J. Aus der Au, and U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998). [CrossRef]

30.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001). [CrossRef]

31.

G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006). [CrossRef] [PubMed]

32.

G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008). [CrossRef] [PubMed]

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 21, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: June 6, 2009
Published: June 11, 2009

Citation
Cyrill R. E. Baer, Christian Kränkel, Oliver H. Heckl, Matthias Golling, Thomas Südmeyer, Rigo Peters, Klaus Petermann, Günter Huber, and Ursula Keller, "227-fs pulses from a mode-locked
Yb:LuScO3 thin disk laser," Opt. Express 17, 10725-10730 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable Concept for Diode-Pumped High-Power Solid-State Lasers,” Appl. Phys. B 58, 365–372 (1994).
  2. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  3. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996). [CrossRef]
  4. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photonics 2(10), 599–604 (2008). [CrossRef]
  5. E. Innerhofer, T. Südmeyer, F. Brunner, R. Paschotta, and U. Keller, “Mode-locked high-power lasers and nonlinear optics - a powerful combination,” Laser Phys. Lett. 1(2), 82–85 (2004). [CrossRef]
  6. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16(9), 6397–6407 (2008). [CrossRef] [PubMed]
  7. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16(25), 20530–20539 (2008). [CrossRef] [PubMed]
  8. E. Innerhofer, F. Brunner, S. V. Marchese, R. Paschotta, U. Keller, K. Furusawa, J. C. Baggett, T. M. Monro, and D. J. Richardson, “32 W of average power in 24-fs pulses from a passively mode-locked thin disk laser with nonlinear fiber compression,” presented at Advanced Solid-State Photonics (ASSP), (Vienna, Austria, 2005), paper TuA3.
  9. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, “Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber,” Opt. Lett. 28(20), 1951–1953 (2003). [CrossRef] [PubMed]
  10. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser,” Opt. Lett. 26(21), 1723–1725 (2001). [CrossRef]
  11. F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen, and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser,” Opt. Lett. 27(13), 1162–1164 (2002). [CrossRef]
  12. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and Nonlinear Laser Properties of the χ(3)-Active Monoclinic α-KY(WO4)2 Crystals,” Crystallogr. Rep. 46(4), 665–672 (2001). [CrossRef]
  13. S. Biswal, S. P. O’Connor, and S. R. Bowman, “Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate,” Appl. Opt. 44(15), 3093–3097 (2005). [CrossRef] [PubMed]
  14. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “High Power Laser Operation of Sesquioxides Yb:Lu2O3 and Yb:Sc2O3,” presented at Conference on Lasers and Electro-Optics, (San Jose, USA, 2008), paper CTuKK4.
  15. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb(3+):Lu(2)O(3) and nondoped Y(2)O(3) combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008). [CrossRef] [PubMed]
  16. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007). [CrossRef] [PubMed]
  17. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15(11), 7075–7082 (2007). [CrossRef] [PubMed]
  18. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15(25), 16966–16971 (2007). [CrossRef] [PubMed]
  19. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “63-W Average Power from Femtosecond Yb:Lu2O3 Thin Disk Laser,” presented at Conference on Lasers and Electro-Optics (Europe), (Munich, Germany, 2009), paper CA2.3.
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009). [CrossRef] [PubMed]
  21. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85(4), 581–584 (2006). [CrossRef]
  22. C. Cascales, A. Méndez Blas, M. Rico, V. Volkow, and C. Zaldo, “The optical spectroscopy of lanthanides R3+ in ABi(XO4)2 (A = Li, Na; X = Mo, W) and LiYb(MoO4)2 multifunctional single crystals: Relationship with the structural local disorder,” Opt. Mater. 27(11), 1672–1680 (2005). [CrossRef]
  23. R. Peters, K. Beil, C. Kränkel, K. Schenk, K. Petermann, and G. Huber, “Ytterbium-doped Sesquioxides for High-Power Solid-State Lasers: Recent Progress in Crystal Growth and Laser Operation,” presented at Conference on Lasers and Electro-Optics (Europe), (Munich, Germany, 2009), paper CA9.1.
  24. R. Peters, K. Petermann, and G. Huber, “A New Mixed Sesquioxide Yb:LuScO3: Spectroscopic Properties and Highly Efficient Thin-Disk Laser Operation,” presented at Advanced Solid-State Photonics (ASSP), (Denver, USA, 2009), paper MC4.
  25. A. Schmidt, X. Mateos, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, A. Klehr, and G. Erbert, “Passively Mode-Locked Yb:LuScO3 Oscillator,” presented at Advanced Solid-State Photonics, (Denver, USA, 2009), paper MB12.
  26. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3,” J. Cryst. Growth 310(7-9), 1934–1938 (2008). [CrossRef]
  27. F. X. Kärtner and U. Keller, “Stabilization of soliton-like pulses with a slow saturable absorber,” Opt. Lett. 20, 16–18 (1995). [CrossRef] [PubMed]
  28. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004). [CrossRef]
  29. F. X. Kärtner, J. Aus der Au, and U. Keller, “Modelocking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998). [CrossRef]
  30. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001). [CrossRef]
  31. G. R. Holtom, “Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars,” Opt. Lett. 31(18), 2719–2721 (2006). [CrossRef] [PubMed]
  32. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited