OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11328–11334
« Show journal navigation

Light bullets in Bessel optical lattices with spatially modulated nonlinearity

Fangwei Ye, Yaroslav V. Kartashov, Bambi Hu, and Lluis Torner  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11328-11334 (2009)
http://dx.doi.org/10.1364/OE.17.011328


View Full Text Article

Acrobat PDF (1851 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the stability of light bullets supported by Bessel optical lattices with out-of-phase modulation of the linear and nonlinear refractive indices. We show that spatial modulation of the nonlinearity significantly modifies the shapes and stability domains of the light bullets. The addressed bullets can be stable, provided that the peak intensity does not exceed a critical value. We show that the width of the stability domain in terms of the propagation constant may be controlled by varying the nonlinearity modulation depth. In particular, we show that the maximum energy of the stable bullets grows with increasing nonlinearity modulation depth.

© 2009 Optical Society of America

Light bullets, or optical spatiotemporal solitons, are one of the most exciting entities in nonlinear optics. They are localized wavepackets in which both diffraction and dispersion are balanced by nonlinearity [1

1. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15, 1282(1990). [CrossRef] [PubMed]

,2

2. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53 (2005). [CrossRef]

]. Being fully three-dimensional states, light bullets are unstable against collapse in uniform focusing Kerr media. A number of settings have been proposed where their stabilization is possible. Thus, stable bullets may form in materials with saturable or competing nonlinearities [3

3. D. E. Edmundson and R. H. Enns, “Robust bistable light bullets,” Opt. Lett. 17, 586 (1992). [CrossRef] [PubMed]

5

5. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, “Stable spinning optical solitons in three dimensions,” Phys. Rev. Lett. 88, 073902 (2002). [CrossRef] [PubMed]

], quadratic [6

6. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with titled pulses,” Phys. Rev. Lett. 81, 570 (1998). [CrossRef]

,7

7. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4361 (1999). [CrossRef]

] or nonlocal [8

8. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E 66, 046619 (2002). [CrossRef]

,9

9. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006). [CrossRef]

] nonlinear media, optical tandem geometries [10

10. L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277 (2001). [CrossRef]

, 11

11. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129 (2009). [CrossRef] [PubMed]

], and also in waveguide arrays and optical lattices imprinted in different materials [12

12. A. B. Aceves and C. De Angelis, “Spatiotemporal pulse dynamics in a periodic nonlinear waveguide,” Opt. Lett. 18, 110 (1993). [CrossRef] [PubMed]

17

17. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902(2005). [CrossRef] [PubMed]

].

Typically, when considering light bullet formation in optical lattices the nonlinearity of the material is assumed to be homogeneous However, current technologies allow engineering of both, linear refractive index and nonlinearity of the material. This is the case, for example, in Bose-Einstein condensates (BECs) loaded in optical lattices, where spatial modulation of the interatomic interaction strength can be achieved by using Feshbach resonances by applying an inhomogeneous external magnetic [18

18. J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and C. E. Wieman, “Resonant magnetic field control of elastic scattering in cold 85Rb,” Phys. Rev. Lett. 81, 5109 (1998). [CrossRef]

] or optical [19

19. F. K. Fatemi, K. M. Jones, and P. D. Lett, “Observation of optically induced Feshbach resonances in collisions of cold atoms,” Phys. Rev. Lett. 85, 4462 (2000). [CrossRef] [PubMed]

] fields. Such possibility has stimulated numerous theoretical studies of solitons in BECs with local modulation of the mean-field nonlinearity or even BECs where periodic nonlinear lattices are created [20

20. M. T. Primatarowa, K. T. Stoychev, and R. S. Kamburova, “Interaction of solitons with extended nonlinear defects,” Phys. Rev. E 72, 036608 (2005). [CrossRef]

24

24. Y. V. Bludov and V. V. Konotop, “Localized modes in arrays of boson-fermion mixtures,” Phys. Rev. A 74, 043616 (2006). [CrossRef]

]. Engineering both, the linear refractive index and the nonlinearity may be also possible in optical structures, e.g., in photonic crystals with the holes infiltrated with a highly nonlinear material, for example index-matching nonlinear liquids [25

25. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in anti-resonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30, 830 (2005). [CrossRef] [PubMed]

28

28. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295 (2009). [CrossRef] [PubMed]

]. Nonlinearity can also be modulated by changing the concentration of dopants upon fabrication. Such modulation has been demonstrated, e.g., in waveguide arrays made by Ti in-diffusion in LiNbO crystals [29

29. F. Chen, M. Stepic, C. E. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314 (2005). [CrossRef] [PubMed]

]. Analogously, nonlinearity modulation can be achieved in arrays written in glass by high-intensity femtosecond laser pulses where the optical damage produced by a tightly focused laser beam causes increase of the refractive index accompanied by a simultaneous decrease of the nonlinearity coefficient [30

30. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138 (2005). [CrossRef]

,31

31. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151 (2006). [CrossRef] [PubMed]

].

The properties of one-dimensional (1D) and two-dimensional (2D) solitons in mixed linear-nonlinear lattices are known to depart substantially from the properties of conventional lattice solitons [32

32. M. Öster, M. Johansson, and A. Eriksson, “Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability,” Phys. Rev. E 67, 056606 (2003). [CrossRef]

41

41. T. Mayteevarunyoo and B. A. Malomed, “Solitons in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 25, 1854 (2008). [CrossRef]

]. However, to date the properties of fully three-dimensional light bullets in materials with simultaneous modulation of the linear refractive index and the nonlinearity have not been addressed. Such investigation is interesting from a fundamental point of view, because examples of settings where stable three-dimensional solitons exist are relatively rare, and many of them also rely on complex composite geometries materials. Moreover, since three-dimensional solitons in uniform cubic media suffer from supercritical collapse, addition of a linear lattice results in their stabilization only in a certain limited range of parameters. Under such conditions additional modulation of the cubic nonlinearity may dramatically affect the domains of existence and stability of the lattice-supported light bullets. Geometries with competing linear and nonlinear lattices, where the refractive index is decreased in the points where the nonlinearity is strongest are particularly intriguing.

In this paper we address fully three-dimensional light bullets in a two-dimensional optical Bessel lattice with out-of-phase modulation of the linear and nonlinear refractive indices. We find that the maximum energy at which light bullets remain stable increases with the depth of the nonlinearity modulation. Interestingly, in the addressed setting the so-called Vakhitov-Kolokolov (VK) criterion accurately predicts the domains of stability and instability only when nonlinearity modulation is not too strong.

We describe the propagation of a light beam along the ξ axis of a medium with imprinted out-of-phase linear and nonlinear lattices, by using the nonlinear Schrödinger equation for the dimensionless complex field amplitude q :

iqξ=12(2qη2+2qξ2)+β22qτ2[1σR(η,ζ)]q2qpR(η,ζ)q.
(1)

Here q(η,ζ, τ, ξ)=(L dif/L nl)1/2 AI -1/2 0; A is the slowly varying envelope; I 0 is the input intensity; ξ=z/L dif is the propagation distance normalized to the diffraction length L dif=k 0 r 2 0; η=x/r 0 and ζ=y/r 0 are the transverse coordinates normalized to the characteristic transverse scale r 0; τ=t/t 0 is the normalized (retarded) time; t 0 is the characteristic pulse duration; L nl=n 0/(k 0 n 2 I 0) is the nonlinear length; β=L dif/L dis ;L dis=-t 2 0/(2/k 0/∂ω 2) is the dispersion length; p and σ describe the modulation depths of the linear refractive index and nonlinearity, respectively; R(r)=J 0[(2b lin)1/2 r] stands for the profile of a radially symmetric lattice, with r=(η 2+ζ 2)1/2 being the radius and b lin a parameter that characterizes the transverse lattice scale. For convenience, here we set b lin=2. Here we consider Bessel lattices, but it is worth noticing that the main conclusions are expected to hold for other similar types of radially symmetric lattices. Notice that the nonlinearity coefficient 1-σR(r) acquires local minima (maxima) in the points where the linear lattice pR(r) attains maxima (minima). We refer to this type of modulation as “out-of-phase”. We consider here only the case σ≤1 when the nonlinearity coefficient 1-σR(r) remains positive for any value of r. Equation (1) conserves the total energy flow U, Hamiltonian H and ξ -projection of angular momentum Lξ :

U=q2dηdζdτ,
H=12[q2βqτ2](1σR)q42pRq2dηdζdτ,
Lξ=eξ2i[r×(q*qqq*)]dηdζdτ.
(2)

where ∇=eη/∂η+eζ/∂ζ, while e η, e ζ, e ξ are unit vectors in directions of η,ζ, ξ axes.

Fig. 1. (a),(c) Spatial field distributions at τ=0, and (b),(d) temporal field distributions at r=0 in light bullets corresponding to b=0.02 (top row) and b=18 (bottom row) at p=3, σ=0.9.

As expected on physical grounds, further growth of soliton amplitude results in a large transformation of spatial shape of light bullets due to the fact that nonlinear contribution to the refractive index starts dominating over the linear lattice and light is expelled into the region where nonlinearity is stronger. This is accompanied by the development of ring-like spatial profiles [Figs. 1(c) and 1(d)], an effect that is most pronounced around the pulse peak (τ=0). The temporal distributions do not change qualitatively and remain bell-shaped. Note that the shift of the intensity peak from the region where the linear index is maximal into the region with higher nonlinearity is possible also in 1D [39

39. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett. 33, 1747 (2008). [CrossRef] [PubMed]

] and 2D [40

40. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index,” Opt. Lett. 33, 2173 (2008). [CrossRef] [PubMed]

] competing linear-nonlinear lattices. Such shape transformation causes non-monotonic dependencies of the energy U on the propagation constant b [Fig. 2(a)]. One can see that increasing the depth of nonlinearity modulation results in a significant growth of the maximum possible energy that the light bullets can carry. As σ increases, the range of propagation constants and energies where the slope of U(b) curve is positive continuously expands. The corresponding Hamiltonian-energy diagram exhibits a single cusp connecting the branches where dU/db is positive [lower curve on H(U) diagram] or negative [upper curve on H(U) diagram] [Fig. 2(b)]. It is a well established fact that in lattices with uniform nonlinearity (σ=0) the branches where dU/db>0 correspond to stable solutions in accordance with the VK stability criterion. We found that when σ≠0 such criterion may fail.

Fig. 2. (a) Energy versus propagation constant and (b) Hamiltonian versus energy for light bullets for p=12 at σ=0.0 (1), 0.5 (2), and 0.7 (3). Real part of perturbation growth rate versus b for p=12 at (c) σ=0.5 and (d) σ=0.7. Critical energy and δb=b cr-b co (e) versus σ at p=12 and (f) versus p at σ=0.6.

We conducted a detailed, rigorous linear stability analysis by looking for perturbed solutions q=[w+u exp(ikϕ+δξ)+v* exp(-ikϕ+δ*ξ)]exp(ibξ), withu,v being small perturbations, corresponding to azimuthal perturbation index k. Substitution of this expression into Eq. (1) and linearization around w(r, τ) yields linear eigenvalue problem for perturbations u,v, which may grow with a complex rate δ=δr+i:

iδu=12(2ur2+1urrk2ur2+2uτ2)+bupRu(1σR)w2(2u+υ),
iδυ=12(2υr2+1rυrk2υr2+2υτ2)bυ+pRυ+(1σR)w2(2υ+u).
(3)

While in lattices analyzed previously, where σ=0, only perturbations with k=0 may destabilize the light bullet solutions, it turns out that in lattices with nonlinearity modulation such as the one addressed here, the perturbation modes associated with k=1 may also become destructive, mainly because high-amplitude bullets tend to develop ring-like structure in space already at moderate σ values. The azimuthal instability associated with k=1 becomes especially pronounced when the depth of nonlinearity modulation exceeds a critical value σ cr that depends on p (for example, at p=12 one gets σ cr≈0.65).

Fig. 3. Isosurface plots showing propagation dynamics of perturbed light bullets corresponding to (a) b=10, (b) b=12, and (c) b=8. Left column shows input patterns at ξ=0, while right column shows output patters at (a) ξ=0.8, (b) ξ=1, and (c) ξ=300. In all cases p=12, σ=0.7.

Typical dependencies of the perturbation growth rate on propagation constant are shown in Figs. 2(c) and 2(d) for σ<σ cr and σ>σ cr, respectively. One can see that at σ<σ cr the instability associated with k=0 appears at smaller b values (exactly corresponding to the point where dU/db changes its sign) than instability corresponding to k=1 and remains dominant for all b. The picture is opposite for σ>σ cr where the instability associated with k=1 appears earlier than the instability with k=0. Therefore, bullets in lattices with sufficiently strong modulation of nonlinearity may be unstable even in the region where dU/db>0 (violation of VK criterion occurs exactly at the point where solitons become unstable with respect to the perturbation mode corresponding to k=1). Figure 2(e) shows the width of the stability domain, defined as δb=b cr-b co (here b cr is the propagation constant value at which bullet becomes unstable) versus nonlinearity modulation depth. One can see that the width of stability domain in terms of propagation constant first increases with σ, acquires its maximal value at σ=σ cr, and then starts decreasing. In contrast, the maximal possible energy U cr=U(b cr) of stable bullet is a monotonically increasing function of σ [Fig. 2(e)]. Finally, we show in Fig. 2(f) how the width of stability domain changes with the depth p of linear lattice when σ is kept fixed. We found that the width of stability domain monotonically increases with p, but the slope of the dependence δb(p) changes abruptly at certain critical lattice depth. Such phenomenon occurs because the upper boundary of the instability domain at small p is determined by the perturbation corresponding to k=1 (this instability comes into play at smaller b values than that corresponding to k=0), while with increasing p the situation gradually reverses and the perturbation corresponding to k=0 appears earlier. The change of the slope of δb(p) dependence occurs exactly at the point where both types of instabilities appear simultaneously. The maximal energy of stable bullets monotonically decreases with increasing lattice depth p.

The above results of the linear stability analysis were confirmed by direct propagation of the stationary solutions, perturbed by initial random fluctuations. Illustrative results are shown in Fig. 3. High-amplitude bullets, which are unstable only to perturbations with azimuthal index k=1, gradually loose their radial symmetry upon propagation due to development of azimuthal modulations accompanied by radiation emission [Fig. 3(a)]. Bullets that are subjected to instabilities with k=0 either experience complete diffraction [Fig. 3(b)] or abrupt contraction depending on the particular shape of input perturbation. In contrast, bullets with moderate amplitudes and propagation constants falling into the stability domain, retain their input shapes upon propagation even in the presence of considerable input noise [Fig.3(c)].

Finally, it is worth mentioning that Bessel linear-nonlinear lattices addressed here can also support light bullets with intrinsic vorticity, i.e. higher-order soliton solutions of Eq. (1) that can be written in the form q=w(r, τ)exp(imϕ)exp(ibξ). Because the intensity of such bullets carrying a phase singularity must vanish at r→0, zero-order Bessel lattices featuring a maximum at r=0 are not suitable for the formation of such states. Instead, one may utilize higher-order Bessel lattices described by the function |R(r)=J n[(2b lin)1/2 r], where n=1,2,…. Such lattices feature clearly pronounced central guiding rings, where vortex-soliton light bullets can form. As in the case of fundamental light bullets, we found that the competition between spatially modulated nonlinearity and linear lattice results in shape transformation of bullets carrying vorticity. Growth of peak intensity is accompanied by the expulsion of bright vortex ring from the first ring of linear lattice into the region between the rings where the nonlinearity is higher. As in the case of fundamental bullets U(b) dependencies for bullets carrying vorticity are nonmonotonic. All nonlinear bullets with vorticity decay via azimuthal instabilities. The properties of the fundamental light bullets supported by higher-order Bessel lattices are qualitatively similar to the properties of bullets in zero-order lattices described here.

In summary, we addressed light bullets supported by two-dimensional Bessel optical lattices with out-of-phase modulation of linear and nonlinear refractive indices. We found that the competition between out-of-phase linear and nonlinear lattices substantially modifies significantly the stability properties of light bullets. In particular, we showed that increasing the depth of the nonlinearity modulation results in the growth of the maximum energy of stable bullets.

Acknowledgements

This work has been supported by the Hong Kong Baptist University and Hong Kong Research Grants Council, and by the Government of Spain through the Ramon-y-Cajal program.

References and links

1.

Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15, 1282(1990). [CrossRef] [PubMed]

2.

B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53 (2005). [CrossRef]

3.

D. E. Edmundson and R. H. Enns, “Robust bistable light bullets,” Opt. Lett. 17, 586 (1992). [CrossRef] [PubMed]

4.

A. Desyatnikov, A. Maimistov, and B. Malomed, “Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity,” Phys. Rev. E 61, 3107 (2000). [CrossRef]

5.

D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, “Stable spinning optical solitons in three dimensions,” Phys. Rev. Lett. 88, 073902 (2002). [CrossRef] [PubMed]

6.

P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with titled pulses,” Phys. Rev. Lett. 81, 570 (1998). [CrossRef]

7.

X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4361 (1999). [CrossRef]

8.

O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E 66, 046619 (2002). [CrossRef]

9.

D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006). [CrossRef]

10.

L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277 (2001). [CrossRef]

11.

L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129 (2009). [CrossRef] [PubMed]

12.

A. B. Aceves and C. De Angelis, “Spatiotemporal pulse dynamics in a periodic nonlinear waveguide,” Opt. Lett. 18, 110 (1993). [CrossRef] [PubMed]

13.

A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19,329 (1994). [CrossRef] [PubMed]

14.

A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, “Energy localization in nonlinear fiber arrays: Collapse-effect compressor,” Phys. Rev. Lett. 75, 73 (1995). [CrossRef] [PubMed]

15.

B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in a low-dimensional periodic potential,” Phys. Rev. A 70, 053613 (2004). [CrossRef]

16.

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice,” Phys. Rev. E 70, 055603 (2004). [CrossRef]

17.

D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902(2005). [CrossRef] [PubMed]

18.

J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and C. E. Wieman, “Resonant magnetic field control of elastic scattering in cold 85Rb,” Phys. Rev. Lett. 81, 5109 (1998). [CrossRef]

19.

F. K. Fatemi, K. M. Jones, and P. D. Lett, “Observation of optically induced Feshbach resonances in collisions of cold atoms,” Phys. Rev. Lett. 85, 4462 (2000). [CrossRef] [PubMed]

20.

M. T. Primatarowa, K. T. Stoychev, and R. S. Kamburova, “Interaction of solitons with extended nonlinear defects,” Phys. Rev. E 72, 036608 (2005). [CrossRef]

21.

F. Ye, Y. V. Kartashov, and L. Torner, “Asymmetric matter-wave solitons at nonlinear interfaces,” Phys. Rev. A 74, 063616 (2006). [CrossRef]

22.

H. Sakaguchi and B. A. Malomed, “Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity,” Phys. Rev. E 73, 026601 (2006). [CrossRef]

23.

H. Sakaguchi and B. A. Malomed, “Matter-wave solitons in nonlinear optical lattices,” Phys. Rev. E 72, 046610 (2005). [CrossRef]

24.

Y. V. Bludov and V. V. Konotop, “Localized modes in arrays of boson-fermion mixtures,” Phys. Rev. A 74, 043616 (2006). [CrossRef]

25.

A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, “Nonlinear propagation effects in anti-resonant high-index inclusion photonic crystal fibers,” Opt. Lett. 30, 830 (2005). [CrossRef] [PubMed]

26.

R. Zhang, J. Telpel, and H. Glessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14, 6800 (2006). [CrossRef] [PubMed]

27.

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145 (2007). [CrossRef] [PubMed]

28.

P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295 (2009). [CrossRef] [PubMed]

29.

F. Chen, M. Stepic, C. E. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314 (2005). [CrossRef] [PubMed]

30.

A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138 (2005). [CrossRef]

31.

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151 (2006). [CrossRef] [PubMed]

32.

M. Öster, M. Johansson, and A. Eriksson, “Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability,” Phys. Rev. E 67, 056606 (2003). [CrossRef]

33.

J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007). [CrossRef] [PubMed]

34.

F. Abdullaev, A. Abdumalikov, and R. Galimzyanov, “Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices,” Phys. Lett. A 367, 149 (2007). [CrossRef]

35.

Z. Rapti, P. G. Kevrekidis, V. V. Konotop, and C. K. R. T. Jones, “Solitary waves under the competition of linear and nonlinear periodic potentials,” J. Phys. A 40, 14151 (2007). [CrossRef]

36.

F. K. Abdullaev, Y. V. Bludov, S. V. Dmitriev, P. G. Kevrekidis, and V. V. Konotop, “Generalized neighbor-interaction models induced by nonlinear lattices,” Phys. Rev. E 77, 016604 (2008). [CrossRef]

37.

Y. Kominis and K. Hizanidis, “Power dependent soliton location and stability in complex photonic structures,” Opt. Express 16, 12124 (2008). [CrossRef] [PubMed]

38.

K. Hizanidis, Y. Kominis, and N. K. Efremidis, “Interlaced linear-nonlinear optical waveguide arrays,” Opt. Express 16, 18296 (2008). [CrossRef] [PubMed]

39.

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett. 33, 1747 (2008). [CrossRef] [PubMed]

40.

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index,” Opt. Lett. 33, 2173 (2008). [CrossRef] [PubMed]

41.

T. Mayteevarunyoo and B. A. Malomed, “Solitons in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 25, 1854 (2008). [CrossRef]

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 15, 2009
Revised Manuscript: June 6, 2009
Manuscript Accepted: June 9, 2009
Published: June 22, 2009

Citation
Fangwei Ye, Yaroslav V. Kartashov, Bambi Hu, and Lluis Torner, "Light bullets in Bessel optical lattices with spatially modulated nonlinearity," Opt. Express 17, 11328-11334 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Silberberg, "Collapse of optical pulses," Opt. Lett. 15, 1282(1990). [CrossRef] [PubMed]
  2. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, "Spatiotemporal optical solitons," J. Opt. B 7, R53 (2005). [CrossRef]
  3. D. E. Edmundson and R. H. Enns, "Robust bistable light bullets," Opt. Lett. 17, 586 (1992). [CrossRef] [PubMed]
  4. A. Desyatnikov, A. Maimistov, and B. Malomed, "Three-dimensional spinning solitons in dispersive media with the cubic-quintic nonlinearity," Phys. Rev. E 61, 3107 (2000). [CrossRef]
  5. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, "Stable spinning optical solitons in three dimensions," Phys. Rev. Lett. 88, 073902 (2002). [CrossRef] [PubMed]
  6. P. Di Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, "Observation of temporal solitons in second-harmonic generation with titled pulses," Phys. Rev. Lett. 81, 570 (1998). [CrossRef]
  7. X. Liu, L. J. Qian, and F. W. Wise, "Generation of optical spatiotemporal solitons," Phys. Rev. Lett. 82, 4361 (1999). [CrossRef]
  8. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E 66, 046619 (2002). [CrossRef]
  9. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, "Three-dimensional spatiotemporal solitons in nonlocal nonlinear media," Phys. Rev. E 73, 025601 (2006). [CrossRef]
  10. L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, "Tandem light bullets," Opt. Commun. 199, 277 (2001). [CrossRef]
  11. L. Torner and Y. V. Kartashov, "Light bullets in optical tandems," Opt. Lett. 34, 1129 (2009). [CrossRef] [PubMed]
  12. A. B. Aceves and C. De Angelis, "Spatiotemporal pulse dynamics in a periodic nonlinear waveguide," Opt. Lett. 18, 110 (1993). [CrossRef] [PubMed]
  13. A. B. Aceves, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, "Multidimensional solitons in fiber arrays," Opt. Lett. 19,329 (1994). [CrossRef] [PubMed]
  14. A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, "Energy localization in nonlinear fiber arrays: Collapse-effect compressor," Phys. Rev. Lett. 75, 73 (1995). [CrossRef] [PubMed]
  15. B. B. Baizakov, B. A. Malomed, and M. Salerno, "Multidimensional solitons in a low-dimensional periodic potential," Phys. Rev. A 70, 053613 (2004). [CrossRef]
  16. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, "Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice," Phys. Rev. E 70, 055603 (2004). [CrossRef]
  17. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, "Stable spatiotemporal solitons in Bessel optical lattices," Phys. Rev. Lett. 95, 023902 (2005). [CrossRef] [PubMed]
  18. J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and C. E. Wieman, "Resonant magnetic field control of elastic scattering in cold 85Rb," Phys. Rev. Lett. 81, 5109 (1998). [CrossRef]
  19. F. K. Fatemi, K. M. Jones and P. D. Lett, "Observation of optically induced Feshbach resonances in collisions of cold atoms," Phys. Rev. Lett. 85, 4462 (2000). [CrossRef] [PubMed]
  20. M. T. Primatarowa, K. T. Stoychev, and R. S. Kamburova, "Interaction of solitons with extended nonlinear defects," Phys. Rev. E 72, 036608 (2005). [CrossRef]
  21. F. Ye, Y. V. Kartashov, and L. Torner, "Asymmetric matter-wave solitons at nonlinear interfaces," Phys. Rev. A 74, 063616 (2006). [CrossRef]
  22. H. Sakaguchi and B. A. Malomed, "Two-dimensional solitons in the Gross-Pitaevskii equation with spatially modulated nonlinearity," Phys. Rev. E 73, 026601 (2006). [CrossRef]
  23. H. Sakaguchi and B. A. Malomed, "Matter-wave solitons in nonlinear optical lattices," Phys. Rev. E 72, 046610 (2005). [CrossRef]
  24. Y. V. Bludov and V. V. Konotop, "Localized modes in arrays of boson-fermion mixtures," Phys. Rev. A 74, 043616 (2006). [CrossRef]
  25. A. Fuerbach, P. Steinvurzel, J. A. Bolger, A. Nulsen, and B. J. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830 (2005). [CrossRef] [PubMed]
  26. R. Zhang, J. Telpel, and H. Glessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Opt. Express 14, 6800 (2006). [CrossRef] [PubMed]
  27. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, "Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers," Opt. Express 15, 12145 (2007). [CrossRef] [PubMed]
  28. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. Kivshar, "Observation of two-dimensional nonlocal gap solitons," Opt. Lett. 34, 295 (2009). [CrossRef] [PubMed]
  29. F. Chen, M. Stepic, C. E. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, "Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays," Opt. Express 13, 4314 (2005). [CrossRef] [PubMed]
  30. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, "Optical properties of infrared femtosecond laser modified fused silica and application to waveguide fabrication," J. Opt. Soc. Am. B 22, 2138 (2005). [CrossRef]
  31. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, "Nonlinear refractive index of fs-laser-written waveguides in fused silica," Opt. Express 14, 2151 (2006). [CrossRef] [PubMed]
  32. M. Öster, M. Johansson, and A. Eriksson, "Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability," Phys. Rev. E 67, 056606 (2003). [CrossRef]
  33. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, "Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities," Phys. Rev. Lett. 98, 064102 (2007). [CrossRef] [PubMed]
  34. F. Abdullaev, A. Abdumalikov, and R. Galimzyanov, "Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices," Phys. Lett. A 367, 149 (2007). [CrossRef]
  35. Z. Rapti, P. G. Kevrekidis, V. V. Konotop, and C. K. R. T. Jones, "Solitary waves under the competition of linear and nonlinear periodic potentials," J. Phys. A 40, 14151 (2007). [CrossRef]
  36. F. K. Abdullaev, Y. V. Bludov, S. V. Dmitriev, P. G. Kevrekidis, and V. V. Konotop, "Generalized neighbor-interaction models induced by nonlinear lattices," Phys. Rev. E 77, 016604 (2008). [CrossRef]
  37. Y. Kominis and K. Hizanidis, "Power dependent soliton location and stability in complex photonic structures," Opt. Express 16, 12124 (2008). [CrossRef] [PubMed]
  38. K. Hizanidis, Y. Kominis, and N. K. Efremidis, "Interlaced linear-nonlinear optical waveguide arrays," Opt. Express 16, 18296 (2008). [CrossRef] [PubMed]
  39. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity," Opt. Lett. 33, 1747 (2008). [CrossRef] [PubMed]
  40. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, "Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index," Opt. Lett. 33, 2173 (2008). [CrossRef] [PubMed]
  41. T. Mayteevarunyoo and B. A. Malomed, "Solitons in one-dimensional photonic crystals," J. Opt. Soc. Am. B 25, 1854 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited