## Light scattering characterization of mitochondrial aggregation in single cells

Optics Express, Vol. 17, Issue 16, pp. 13381-13388 (2009)

http://dx.doi.org/10.1364/OE.17.013381

Acrobat PDF (526 KB)

### Abstract

Three dimensional finite-difference time-domain (FDTD) simulations are employed to show that light scattering techniques may be used to infer the mitochondrial distributions that exist within single biological cells. Two-parameter light scattering plots of the FDTD light scattering spectra show that the small angle forward scatter can be used to differentiate the case of a random distribution of mitochondria within a cell model from that in which the mitochondria are aggregated to the nuclear periphery. Fourier transforms of the wide angle side scatter spectra show a consistent highest dominant frequency, which may be used for size differentiation of biological cells with distributed mitochondria.

© 2009 OSA

## 1. Introduction

*et al*. suggested that organelles with sizes similar to that of mitochondria are the dominant scatterers for the light scattering measured from intact biological cells [4

4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. **37(16)**, 3586–3593 (1998). [CrossRef]

2. C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. **10(1)**, 014007 (2005). [CrossRef]

6. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP **14**, 302–307 (1966). [CrossRef]

*et al*. reported that mitochondria dominate the 2D light scatter patterns from human Raji cells [8

8. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express **15(17)**, 10562–10575 (2007). [CrossRef]

9. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices **7(4)**, 331–339 (2005). [CrossRef]

11. L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. **65(10)**, 4191–4201 (2005). [CrossRef]

9. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices **7(4)**, 331–339 (2005). [CrossRef]

11. L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. **65(10)**, 4191–4201 (2005). [CrossRef]

9. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices **7(4)**, 331–339 (2005). [CrossRef]

12. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene **25(34)**, 4706–4716 (2006). [CrossRef]

## 2. Simulation methods

**7(4)**, 331–339 (2005). [CrossRef]

11. L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. **65(10)**, 4191–4201 (2005). [CrossRef]

*ρ*of finding a mitochondrion at a distance

*R*(center of a mitochondrion to the center of the nucleus) in a cell is given as (all sizes in µm):

_{d}*r*is the radius of the nucleus,

_{n}*r*is the radius of the mitochondrion,

_{m}*r*is the radius of the cell, and

_{c}*δ*is the smallest distance between any two organelles,

_{m}*ρ*

_{0}and

*α*are constants for the probability distribution. In this paper the thicknesses of zone I and zone III are defined as

*r*+

_{m}*δ*, where

_{d}*δ*is a constant smaller than (

_{d}*r*−

_{c}*r*−2

_{n}*r*)/2. In this case, the thickness of zone II is given by (

_{m}*r*−

_{c}*r*−2(

_{n}*r*+

_{m}*δ*)). The Eq. (1) above describes mitochondrial aggregation to the nuclear periphery, Eq. (2) describes randomly distributed mitochondria within the cell and Eq. (3) describes mitochondrial aggregation to the cell membrane.

_{d}*ρ*

_{0}=0.6,

*α*=0.1 µm,

*δ*=0.3 µm,

_{d}*δ*=0.01 µm,

_{m}*r*=0.4 µm [1],

_{m}*r*=3.0 µm and

_{n}*r*=5.0 µm [13

_{c}13. R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. **79(11)**, 2149–2152 (1997). [CrossRef]

*α*is set to 0.01µm instead of 0.1µm in Eq. (3), all the 180 mitochondria will be distributed in Zone III as tested for different random seeds. Eight different random seeds are assigned to generate eight realizations for each different mitochondrial distribution via a Monte Carlo method as determined by Eqs. (1) to (3). In this case, for each random seed the mitochondria can have three different distributions. For the same kind of mitochondrial distribution, the eight different random seeds generate eight realizations but do not significantly change the mitochondria numbers in each of the zones I, II and III. Note that all the eight realizations for each different mitochondrial distribution were generated arbitrarily and we believe that they are representative for the differentiation of the different mitochondrial distributions. Visualizations of the representative 3D biological cell models are shown in Figs. 1(b) and (c), for a “cancer cell” and a “normal cell” model, respectively. There are 36 mitochondria in zone I, 67 in zone II, and 77 in zone III for the distribution given by “cancer cell” model Fig. 1(b). For the “normal cell” model as shown in Fig. 1(c), there are 142 mitochondria in zone I, 33 in zone II, and 5 in zone III.

15. G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. **23(4)**, 377–382 (1981). [CrossRef]

16. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. **114(2)**, 185–200 (1994). [CrossRef]

2. C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. **10(1)**, 014007 (2005). [CrossRef]

*k*̂

*along the*

_{i}*z*̂ direction, and is polarized along the

*x*̂ direction. The scattered wave

*k*̂s has an azimuth angle

*φ*, and a polar angle

*θ*. The refractive index for the cell cytoplasm is 1.38, 1.39 for the nucleus, and 1.42 for the mitochondria [1,8

8. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express **15(17)**, 10562–10575 (2007). [CrossRef]

## 3. Results and discussion

8. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express **15(17)**, 10562–10575 (2007). [CrossRef]

*θ*with the azimuth angle fixed at

*φ*=90 degrees,

*i.e.*, a cross section scanning of the 2D light scattering patterns.

17. H. M. Shapiro, *Practical Flow Cytometry*, (John Wiley & Sons, Inc., Hoboken, NJ, 2003). [CrossRef]

17. H. M. Shapiro, *Practical Flow Cytometry*, (John Wiley & Sons, Inc., Hoboken, NJ, 2003). [CrossRef]

18. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. **27(1)**, 250–263 (1979). [CrossRef]

17. H. M. Shapiro, *Practical Flow Cytometry*, (John Wiley & Sons, Inc., Hoboken, NJ, 2003). [CrossRef]

18. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. **27(1)**, 250–263 (1979). [CrossRef]

19. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. **13(2)**, 024024 (2008). [CrossRef]

19. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. **13(2)**, 024024 (2008). [CrossRef]

19. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. **13(2)**, 024024 (2008). [CrossRef]

**13(2)**, 024024 (2008). [CrossRef]

## 4. Conclusions

20. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip **4(4)**, 372–377 (2004). [CrossRef]

**13(2)**, 024024 (2008). [CrossRef]

## Acknowledgements

## References and links

1. | A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. |

2. | C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. |

3. | J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. |

4. | J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. |

5. | X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. |

6. | K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP |

7. | A. Taflove and S. C. Hagness, |

8. | X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express |

9. | P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices |

10. | W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. |

11. | L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. |

12. | E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene |

13. | R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. |

14. | Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series |

15. | G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. |

16. | J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. |

17. | H. M. Shapiro, |

18. | M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. |

19. | X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. |

20. | Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip |

**OCIS Codes**

(000.1430) General : Biology and medicine

(000.4430) General : Numerical approximation and analysis

(170.1530) Medical optics and biotechnology : Cell analysis

(170.1610) Medical optics and biotechnology : Clinical applications

(290.0290) Scattering : Scattering

**ToC Category:**

Medical Optics and Biotechnology

**History**

Original Manuscript: November 21, 2008

Revised Manuscript: June 1, 2009

Manuscript Accepted: July 15, 2009

Published: July 20, 2009

**Virtual Issues**

Vol. 4, Iss. 10 *Virtual Journal for Biomedical Optics*

**Citation**

Xuan-Tao Su, Kirat Singh, Wojciech Rozmus, Christopher Backhouse, and Clarence Capjack, "Light scattering characterization of mitochondrial aggregation in single cells," Opt. Express **17**, 13381-13388 (2009)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13381

Sort: Year | Journal | Reset

### References

- A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).
- C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005). [CrossRef]
- J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005). [CrossRef]
- J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998). [CrossRef]
- X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
- K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966). [CrossRef]
- A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood, MA, 2005).
- X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007). [CrossRef]
- P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005). [CrossRef]
- W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).
- L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005). [CrossRef]
- E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006). [CrossRef]
- R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997). [CrossRef]
- Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).
- G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981). [CrossRef]
- J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
- H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, Inc., Hoboken, NJ, 2003). [CrossRef]
- M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979). [CrossRef]
- X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008). [CrossRef]
- Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.