OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 17 — Aug. 17, 2009
  • pp: 15248–15256
« Show journal navigation

Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors

Long Chen, Kyle Preston, Sasikanth Manipatruni, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 17, Issue 17, pp. 15248-15256 (2009)
http://dx.doi.org/10.1364/OE.17.015248


View Full Text Article

Acrobat PDF (391 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an optical link on silicon using micrometer-scale ring-resonator enhanced silicon modulators and waveguide-integrated germanium photodetectors. We show 3 Gbps operation of the link with 0.5 V modulator voltage swing and 1.0 V detector bias. The total energy consumption for such a link is estimated to be ~120 fJ/bit. Such a compact and low power monolithic link is an essential step towards large-scale on-chip optical interconnects for future microprocessors.

© 2009 OSA

1. Introduction

2. Design of the integrated optical link

To reduce the size and power consumption of the link, we choose a resonator-based modulator of only 12 μm in diameter. The modulator consists of a bus waveguide and a microring resonator with a lateral PIN junction across the waveguide forming the ring [11

11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

], as shown in Fig. 1(b). The resonator scheme greatly enhances the sensitivity of the optical signal to the relatively small phase changes in the ring induced by the injection and extraction of free carriers. This enhanced sensitivity, together with the small size of the ring, leads to much lower power consumption than non-resonator-based modulators [10

10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]

,12

12. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]

,25

25. The International Technology Roadmap for Semiconductors (ITRS) updates (2008).

]. We have previously demonstrated up to 18 Gbps operation using such modulators [13

13. S. Manipatruni, Q. Xu, B. S. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proceedings of Lasers and Electro-Optics Society, 537–538 (2007).

]. For the detector (see Fig. 1(c)) we choose a waveguide-integrated metal-semiconductor-metal (MSM) detector due to its ultra-low capacitance and fast response. We have recently demonstrated detectors with 2.4 fF capacitance and response time as short as 8.8 ps using a similar design [24

24. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]

].

3. Device fabrication

4. Characterization of the integrated optical link

We characterize the DC behavior of the PIN silicon modulator and MSM germanium detector and show current injection for the modulator and low dark current for the detector. A diagram of the experimental setup is shown in Fig. 3(a)
Fig. 3 Characterization of the integrated optical link. (a) Experimental setup illustrating the optical and electrical paths. (b) IV curve of silicon electro-optical modulator. (c) Dark and illuminated (0.67 mW from fiber) IV curve of germanium photodetector. (d) DC spectrum of detector response with 0.67 mW fiber illumination and 0.5 V detector bias, showing the resonances of the ring modulator before the detector.
. The optical path is shown with thicker red line and consists of a continuous-wave laser, fiber polarization controller (PC), and the silicon waveguide on the chip from the facet to the modulator and between the modulator and the detector. The electrical path is shown with thinner black line. Note that while external electronics are used here, in principle the receiver and the driver functions can be monolithically integrated on the same silicon chip [26

26. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaere, “Monolithically integrated high-speed CMOS photonic transceivers,” in 5th IEEE International Conference on Group IV Photonics, 362–364 (2008).

]. Figure 3(b) shows the current-voltage (IV) response of the modulator PIN diode with differential resistance of approximately 2 kΩ at 1.6 V and 770 Ω at 2 V. Figure 3(c) shows an example of the detector photocurrent and dark current as a function of detector bias voltage. The dark current is 280 nA at 0.5 V bias and 1.4 μA at 1 V. When the waveguide is illuminated with 0.67 mW optical power (transverse-electrical polarized, measured from the fiber tip) at λ = 1530 nm, the photocurrent saturates at around 0.13 mA with a bias voltage of 0.3 V. The measured responsivity of approximately 0.2 A/W is limited by optical losses throughout the propagation path. From similar devices we estimate 4 dB coupling loss (without nanotaper spot-size converter), 1 dB off-resonance insertion loss through the modulator (including the two transitions between the regions with and without 50 nm slab), and 2 dB total waveguide propagation loss for a waveguide length of ~2.5 mm between the chip facet and the detector. Note that the relatively large propagation loss, estimated about 8 dB/cm, is due to the non-optimized fabrication processes, including the two-step etching to create both channel waveguides and modulators with a thin slab and the severe waveguide undercut after several hydrofluoric acid clean steps. The net responsivity of the detector is thus estimated to be around 0.8 – 0.9 A/W.

We also measure the optical transmission spectrum of the ring resonator using the germanium detector at the waveguide termination. The detector is biased here at Vdet = 0.5 V. The spectrum is shown in Fig. 3(d), showing clear resonances of the ring modulator. The resonances are slightly under-coupled and exhibit moderate extinction ratios from 7 to 9 dB. The resonance quality factors Q (defined as the ratio of the resonance wavelength λr to the linewidth λFWHM) are around 5,000 - 6,500. Note that while the response falls off at longer wavelength due to the decreasing absorption of germanium beyond its direct band gap, throughout the C-band (1530 - 1565 nm) the photocurrent is about two orders of magnitude greater than the dark current, providing a wide operating wavelength range. Further improvement can be achieved by doping the germanium and shifting the metal electrodes away from the optical mode to avoid the competing metal absorption.

5. Discussion

Acknowledgement

The authors would like to John R. Lowell from Defense Advanced Research Projects Agency (DARPA) for partially supporting this work under the DARPA Optical Arbitrary Waveform Generation Program. This work was also partially funded by the Interconnect Focus Center Research Program, supported in part by the Microelectronics Advanced Research Corporation (MARCO), and its participating companies. This work was performed in part at the Cornell Nano-Scale Science & Technology Facility (a member of the National Nanofabrication Users Network) which is supported by National Science Foundation, its users, Cornell University and Industrial Affiliates. Part of the characterization was performed in Bell Laboratories, Alcatel-Lucent, and L. Chen acknowledges Christopher Doerr and Jeffrey Sinsky for helpful discussions.

References and links

1.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]

2.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]

3.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]

4.

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kaertner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor to DRAM networks with monolithic silicon photonics,” IEEE Symposium on High-Performance Interconnects, 21–30 (2008).

5.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005). [CrossRef] [PubMed]

6.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]

7.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Tuner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength source,” Conference on Lasers and Electro-optics, CPDB8 (2009).

8.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]

9.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]

10.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]

11.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

12.

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]

13.

S. Manipatruni, Q. Xu, B. S. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proceedings of Lasers and Electro-Optics Society, 537–538 (2007).

14.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE International Conference on Group IV Photonics, 4–6, (2008).

15.

J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electroabsorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

16.

L. Liu, J. Van Campenhout, G. Roelkens, R. A. Soref, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. M. Fédéli, and R. Baets, “Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity,” Opt. Lett. 33(21), 2518–2520 (2008). [CrossRef] [PubMed]

17.

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007). [CrossRef] [PubMed]

18.

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009). [CrossRef] [PubMed]

19.

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]

20.

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]

21.

L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008). [CrossRef] [PubMed]

22.

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40GHz germanium waveguide photodetector for on-chip optical interconnects,” Optical Fiber Communication Conference, OMR4 (2009).

23.

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]

24.

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]

25.

The International Technology Roadmap for Semiconductors (ITRS) updates (2008).

26.

T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaere, “Monolithically integrated high-speed CMOS photonic transceivers,” in 5th IEEE International Conference on Group IV Photonics, 362–364 (2008).

27.

Q. Tong, L. Huang, and U. Gosele, “Transfer of semiconductor and oxide films by wafer bonding and layer cutting,” J. Electron. Mater. 29(7), 928–933 (2000). [CrossRef]

28.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]

29.

T. D. Ridder, X. Yin, P. Ossieur, X. Qiu, J. Vandewege, O. Chasles, A. Devos, and P. D. Pauw, “Monolithic transimpedance amplifier design for large photodiode capacitance and wide temperature range,” Proceedings Symposium IEEE/LEOS Benelux Chapter, 245–248 (2005).

30.

R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]

31.

The free carrier lifetime in passive silicon waveguides of similar dimensions is reported to be ~450 ps, which usually limits the data rate to 1~2 Gbps with direct driving. In our case with the PIN junction, the lifetime is greatly reduced to approximately 300 ps), probably caused by the very heavy doping (up to 6×1020 cm−3) close to the waveguide. As a result, the modulator can work at up to 3 Gbps even without reverse bias to extract the carriers.

32.

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]

33.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “On-chip copper-based vs. optical interconnects: delay uncertainty, latency, power, and bandwidth density comparative predictions,” IEEE International Interconnect Technology Conference, 39–41 (2006).

34.

S. M. R. Hasan, “A novel CMOS low-voltage regulated cascode trans-impedance amplifier operating at 0.8V supply voltage,” IEEE International Conference on Mechatronics and Machine Vision in Practice, 51–56 (2008).

35.

B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood Jr, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]

36.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006). [CrossRef] [PubMed]

OCIS Codes
(040.5160) Detectors : Photodetectors
(200.4650) Optics in computing : Optical interconnects
(250.5300) Optoelectronics : Photonic integrated circuits
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: June 25, 2009
Revised Manuscript: August 5, 2009
Manuscript Accepted: August 7, 2009
Published: August 13, 2009

Citation
Long Chen, Kyle Preston, Sasikanth Manipatruni, and Michal Lipson, "Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors," Opt. Express 17, 15248-15256 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-15248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000). [CrossRef]
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  3. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008). [CrossRef]
  4. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kaertner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor to DRAM networks with monolithic silicon photonics,” IEEE Symposium on High-Performance Interconnects, 21–30 (2008).
  5. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005). [CrossRef] [PubMed]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  7. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Tuner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength source,” Conference on Lasers and Electro-optics, CPDB8 (2009).
  8. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  9. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless silicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  12. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  13. S. Manipatruni, Q. Xu, B. S. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” IEEE Proceedings of Lasers and Electro-Optics Society, 537–538 (2007).
  14. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in 5th IEEE International Conference on Group IV Photonics, 4–6, (2008).
  15. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electroabsorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]
  16. L. Liu, J. Van Campenhout, G. Roelkens, R. A. Soref, D. Van Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. M. Fédéli, and R. Baets, “Carrier-injection-based electro-optic modulator on silicon-on-insulator with a heterogeneously integrated III-V microdisk cavity,” Opt. Lett. 33(21), 2518–2520 (2008). [CrossRef] [PubMed]
  17. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007). [CrossRef] [PubMed]
  18. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009). [CrossRef] [PubMed]
  19. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007). [CrossRef] [PubMed]
  20. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  21. L. Chen, P. Dong, and M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 (2008). [CrossRef] [PubMed]
  22. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40GHz germanium waveguide photodetector for on-chip optical interconnects,” Optical Fiber Communication Conference, OMR4 (2009).
  23. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  24. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  25. The International Technology Roadmap for Semiconductors (ITRS) updates (2008).
  26. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaere, “Monolithically integrated high-speed CMOS photonic transceivers,” in 5th IEEE International Conference on Group IV Photonics, 362–364 (2008).
  27. Q. Tong, L. Huang, and U. Gosele, “Transfer of semiconductor and oxide films by wafer bonding and layer cutting,” J. Electron. Mater. 29(7), 928–933 (2000). [CrossRef]
  28. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  29. T. D. Ridder, X. Yin, P. Ossieur, X. Qiu, J. Vandewege, O. Chasles, A. Devos, and P. D. Pauw, “Monolithic transimpedance amplifier design for large photodiode capacitance and wide temperature range,” Proceedings Symposium IEEE/LEOS Benelux Chapter, 245–248 (2005).
  30. R. A. Soref and B. R. Bennett, “Electro optical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  31. The free carrier lifetime in passive silicon waveguides of similar dimensions is reported to be ~450 ps, which usually limits the data rate to 1~2 Gbps with direct driving. In our case with the PIN junction, the lifetime is greatly reduced to approximately 300 ps), probably caused by the very heavy doping (up to 6×1020 cm−3) close to the waveguide. As a result, the modulator can work at up to 3 Gbps even without reverse bias to extract the carriers.
  32. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  33. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “On-chip copper-based vs. optical interconnects: delay uncertainty, latency, power, and bandwidth density comparative predictions,” IEEE International Interconnect Technology Conference, 39–41 (2006).
  34. S. M. R. Hasan, “A novel CMOS low-voltage regulated cascode trans-impedance amplifier operating at 0.8V supply voltage,” IEEE International Conference on Mechatronics and Machine Vision in Practice, 51–56 (2008).
  35. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]
  36. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited