OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 18 — Aug. 31, 2009
  • pp: 16029–16031
« Show journal navigation

1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply

Yitang Dai, Xianpei Chen, Yoshitomo Okawachi, Amy C. Turner-Foster, Mark. A. Foster, Michal Lipson, Alexander L. Gaeta, and Chris Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 18, pp. 16029-16031 (2009)
http://dx.doi.org/10.1364/OE.17.016029


View Full Text Article

Acrobat PDF (278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the primary claim in the Comment by N. Alic et al. that our scheme for generating 1-μs tunable delays via Si-based waveguides in [Opt. Express 17, 7004-7010 (2009)] cannot support wavelength transparency by showing experimentally that the addition of a third conversion stage to reconvert to the input wavelength has minimal effect on the performance of our delay scheme.

© 2009 OSA

Our data clearly show that the third wavelength conversion results in an additional power penalty to the system of ~0.5 dB, consistent with our discussion in [1

1. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009). [CrossRef] [PubMed]

]. The three Si waveguides used in this experiment have on-off conversion efficiencies of approximately −20 dB, which is nearly identical to that of the two Si waveguides used in our original experiment. The output coupling from the Si waveguide to the single-mode fiber is slightly improved in this experiment, resulting in a 0.9-dB improvement in power penalty at a BER of 10−9 when compared to our original experiment. Our experiment demonstrates that, if wavelength preserving operation is required by the application, all three wavelength conversions can be accomplished using FWM in Si waveguides. Silicon devices have major advantages over highly nonlinear fibers in terms of conversion bandwidth, power consumption, photonic integration, and the absence of SBS. The main drawback of silicon currently is the low conversion efficiency. We note that silicon devices for parametric processes have been in development for approximately three years, whereas those based on fiber have been researched for nearly thirty years. The conversion efficiency of silicon waveguides is steadily improving and the reduction of coupling and propagation losses of the waveguide has lead to efficiencies of −10 dB [9

9. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]

], which will further decrease the power penalty of the delay system.

References and links

1.

Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009). [CrossRef] [PubMed]

2.

J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005). [CrossRef] [PubMed]

3.

A. Gaeta, J. E. Sharping, C. Xu, “Continuously tunable, pulse delay generator using wavelength conversion and dispersion,” United States Patent, 7538935.

4.

E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” IEEE Photon. Technol. Lett. 21(4), 251–253 (2009). [CrossRef]

5.

E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009). [CrossRef] [PubMed]

6.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007). [CrossRef]

7.

Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008). [CrossRef] [PubMed]

8.

B. G. Lee, A. Biberman, M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, and K. Bergman, “Bit-error-rate characterization of Silicon four-wave-mixing wavelength converters at 10 and 40 Gb/s,” CLEO 2008, paper CPDB4.

9.

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 27, 2009
Published: August 25, 2009

Citation
Yitang Dai, Xianpei Chen, Yoshitomo Okawachi, Amy C. Turner-Foster, Mark. A. Foster, Michal Lipson, Alexander L. Gaeta, and Chris Xu, "1 μs tunable delay using parametric mixing and optical phase conjugation in Si waveguides: reply," Opt. Express 17, 16029-16031 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-16029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009). [CrossRef] [PubMed]
  2. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13(20), 7872–7877 (2005). [CrossRef] [PubMed]
  3. A. Gaeta, J. E. Sharping, and C. Xu, “Continuously tunable, pulse delay generator using wavelength conversion and dispersion,” United States Patent, 7538935.
  4. E. Myslivets, N. Alic, J. R. Windmiller, R. M. Jopson, and S. Radic, “400 ns continuously tunable delay of 10 Gbps intensity modulated optical signal,” IEEE Photon. Technol. Lett. 21(4), 251–253 (2009). [CrossRef]
  5. E. Myslivets, N. Alic, S. Moro, B. P. P. Kuo, R. M. Jopson, C. J. McKinstrie, M. Karlsson, and S. Radic, “1.56-micros continuously tunable parametric delay line for a 40-Gb/s signal,” Opt. Express 17(14), 11958–11964 (2009). [CrossRef] [PubMed]
  6. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” Photon. Technol. Lett. 19(11), 861–863 (2007). [CrossRef]
  7. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008). [CrossRef] [PubMed]
  8. B. G. Lee, A. Biberman, M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, and K. Bergman, “Bit-error-rate characterization of Silicon four-wave-mixing wavelength converters at 10 and 40 Gb/s,” CLEO 2008, paper CPDB4.
  9. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited