OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 16722–16730
« Show journal navigation

Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 16722-16730 (2009)
http://dx.doi.org/10.1364/OE.17.016722


View Full Text Article

Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental results showing that quantum correlated light can be produced using non-degenerate, off-resonant, four-wave mixing (4WM) on both the D1 (795 nm) and D2 (780 nm) lines of 85Rb and 87Rb, extending earlier work on the D1 line of 85Rb. Using this 4WM process in a hot vapor cell to produce bright twin beams, we characterize the degree of intensity-difference noise reduction below the standard quantum limit for each of the four systems. Although each system approximates a double-lambda configuration, differences in details of the actual level structure lead to varying degrees of noise reduction. The observation of quantum correlations on light produced using all four of these systems, regardless of their substructure, suggests that it should be possible to use other systems with similar level structures in order to produce narrow frequency, non-classical beams at a particular wavelength.

© 2009 OSA

1. Introduction

Since the early days of research on squeezed states of light [1

1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985). [CrossRef] [PubMed]

], it has been appreciated that four-wave mixing (4WM) in an atomic vapor can produce non-classical states of light. Achieving high levels of single mode quadrature squeezing in this way has, however, proved difficult even when cold atoms are used [2

2. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett. 36(2), 93–98 (1996). [CrossRef]

]. Despite this, work on 4WM in atomic vapors has continued, particularly as interest has broadened beyond single mode quadrature squeezing to quantum correlations between multiple beams. For example, the use of both cold atoms and electromagnetically induced transparency has opened the way for 4WM production of correlated photons using ultra-low optical powers in an optically thick medium [3

3. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004). [CrossRef] [PubMed]

]. The development of “slow light” based optical delay lines and atomic memories [4

4. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]

7

7. G. Hètet, B. C. Buchler, O. Glöeckl, M. T. L. Hsu, A. M. Akulshin, H. A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16(10), 7369–7381 (2008). [CrossRef] [PubMed]

] has driven the interest in having narrowband non-classical light sources tuned near an atomic resonance [8

8. G. Hétet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40(1), 221–226 (2007). [CrossRef]

, 9

9. S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98 (2008). [CrossRef]

]. Four-wave mixing in atomic vapors is a natural choice for producing such light. In addition, proposals for using non-classical light to manipulate cold atoms have been put forth [10

10. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72(3), 033601 (2005). [CrossRef]

, 11

11. P. D. Lett, “Correlated photons for correlated atoms,” J. Mod. Opt. 51, 1817 (2004).

] which also require narrowband light near atomic resonance.

We have recently shown that, with the proper choice of operating parameters, non-degenerate, off-resonant 4WM on the D1 line of 85Rb closely approximates an ideal double-lambda system [12

12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

] and can be used to produce entangled twin beams of light. Intensity-difference measurements on bright twin beams produced this way show a high degree of quantum noise reduction, approaching the best values reported for any kind of quantum noise reduction scheme [13

13. J. Laurat, L. Longchambon, C. Fabre, and T. Coudreau, “Experimental investigation of amplitude and phase quantum correlations in a type II optical parametric oscillator above threshold: from nondegenerate to degenerate operation,” Opt. Lett. 30(10), 1177–1179 (2005). [CrossRef] [PubMed]

, 14

14. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008). [CrossRef] [PubMed]

]. In addition we have shown that this 4WM process in a hot vapor cell can be used as the basis for constructing a variety of interesting quantum processing devices: a delay line for a portion of an entangled quantum state [15

15. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]

], a low noise amplifier for quantum states [16

16. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009). [CrossRef] [PubMed]

], and a device to produce entangled images [17

17. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]

]. This naturally brings up the question of whether other atomic lines, with broadly similar level structures, but differing in detail, might also be useful for such purposes.

In this paper we extend our earlier work on the D1 line of 85Rb and show that quantum noise reduction can also be obtained at the D2 line in 85Rb as well as at the D1 and D2 lines in 87Rb. Under the circumstances we have investigated, the D2 lines appear a less favorable choice than the D1 lines, showing evidence of competing effects beyond 4WM. Still, the levels of quantum noise reduction using the D2 lines are comparable to the levels achieved with other atom-based noise reduction schemes [2

2. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett. 36(2), 93–98 (1996). [CrossRef]

, 18

18. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008). [CrossRef] [PubMed]

]. The results for the D1 line of 87Rb are complicated by residual 85Rb in the cell, which produces extra absorption for one of the light beams. Even with this extra absorption, the present 87Rb cell can be used to produce high levels of quantum correlations. These results strongly suggest that the same method for generating nonclassical light, namely off-resonant, non-degenerate 4WM in a double-lambda system, will be useful in other systems with similar level structures.

2. Experiment

In the present experiments we use 4WM in a hot rubidium vapor to produce bright twin beams of light, called the probe and conjugate, and measure the degree of intensity correlation between them. Such measurements are an experimentally convenient way of characterizing the degree to which the system approximates an ideal 4WM system, free from competing processes. This twin beam source can also be viewed as a linear phase insensitive amplifier [16

16. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009). [CrossRef] [PubMed]

], the theory of which is well established [19

19. C. M. Caves, “Quantum Limits on Noise in Linear-Amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982). [CrossRef]

]. Ideally the system is described by a single parameter, the gain G. The input probe beam (powerPin) is amplified to produce an output probe beam with power GPinwhile the output conjugate beam (seeded only by vacuum in our experiment) has power (G1)Pin. The noise on the intensity difference between the probe and conjugate beams, expressed in dB relative to the standard quantum limit (SQL), is 10log10(2G1) (in the experiment we measure the noise on the power difference between the probe and conjugate beams, but the convention is to refer to this as “intensity difference” since intensity is the quantity calculated in an infinite plane wave model). Here the SQL is defined as the intensity-difference noise on a pair of equal power beams, produced from a coherent laser beam by a beamsplitter, having the same total power as the probe plus conjugate beams. In this paper the term “squeezing” refers to intensity-difference noise levels below the SQL for a pair of twin beams.

To produce the twin beams, a strong pump beam and weak probe beam are overlapped in a vapor cell. Figure 1
Fig. 1 Left: Energy level diagram showing the double-lambda system. Δ: pump detuning from resonance; νHF: hyperfine splitting in the ground state. Right: Experimental setup. SA: spectrum analyzer; Pr: probe; P: pump; C: conjugate.
(left panel) shows a simplified atomic energy level diagram and the optical fields that make up the double-lambda system. Since one cycle of the 4WM process absorbs two pump photons and produces one probe and one conjugate photon, the intensities of the output probe and conjugate beams are highly correlated. The two lower levels, F1 and F2, are the two hyperfine levels in the ground 5S1/2 state; the upper broadened level is the 5P1/2 or 5P3/2 state. The broadening is meant to suggest the presence of several hyperfine levels as well as Doppler broadening of the transition. With this configuration the pump, probe and conjugate fields build coherence between the two atomic ground states, which enhances the efficiency of the 4WM process [20

20. M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158(1-6), 273–286 (1998). [CrossRef]

23

23. M.D. Lukin, P.R. Hemmer, and M.O. Scully, “Resonant nonlinear optics in phase coherent media,” in Advances in Atomic, Molecular, and Optical Physics 42, Elsevier (1999).

].

Figure 1 (right panel) shows the experimental setup. The pump (P) and probe (Pr) beams have orthogonal linear polarizations and are combined on a polarizing beam splitter. The weak probe beam crosses the strong pump beam at a small angle θ (<1°) in a 12 mm long glass cell containing Rb vapor at ≈110 °C. The output probe and conjugate beams are separated from the pump using a polarizing beam splitter and sent to a balanced photodetector. The difference of the two photodiode signals is sent to a radio frequency (RF) spectrum analyzer which displays the noise power in a fixed bandwidth as a function of frequency. All of the noise measurements in this paper were taken at an analysis frequency of 1 MHz. The measured noise signal from the 4WM process is compared to the SQL, established experimentally as described above. Electronics noise and the noise due to scattered pump light have been subtracted from the measured noise levels.

Two independent Ti:Sapphire lasers are used to generate the pump and probe beams. The laser producing the pump is locked to an internal temperature-stabilized reference cavity. The beat note between the two lasers is detected with a high-speed photodiode and is sent to a microwave Mach-Zehnder interferometer. The interferometer consists of an input power splitter, two arms, one with a variable phase delay, and an output mixer. The DC signal from the output mixer is fed to a proportional-integral controller driving the external tuning input of the Ti:Sapphire laser used to generate the probe. For efficient 4WM the pump-probe frequency difference is required to be approximately the atomic ground state hyperfine splitting, νHF (3.036 GHz for 85Rb, 6.835 GHz for 87Rb). Adjustments of the phase delay in the microwave interferometer provide fine-tuning of the two-photon detuning, δ=νPνPrνHF where νPand νPrare the frequencies of the pump and probe, respectively.

This method keeps the laser frequency difference stable within ±2MHz. In order to see if the residual phase and frequency jitter are important limitations on the observable levels of squeezing, we compared data taken using this locking scheme to that taken using phase locked pump and probe beams produced from a single Ti:Sapphire laser by means of a double-passed 1.5 GHz acousto-optic modulator. Given the available modulator, this single laser scheme could only be used for 85Rb where νHF3GHz. The two different laser locking techniques produced essentially the same level of squeezing on the 85Rb D1 line, at least for an analysis frequency of 1 MHz where we were working. For all of the data in this paper we used the two frequency-locked lasers since this method could be used for both 85Rb and 87Rb.

The level of squeezing produced by the 4WM process depends on the choice of operating parameters: the number density of the Rb vapor, the pump power, the detuning Δ of the pump relative to resonance, the two photon detuning δ, and the crossing angle θ. To fully explore the effects of all these parameters is beyond the scope of the present experiment where our goal is to establish whether or not squeezing can be observed for systems other than the D1 line of 85Rb. To that end we have started with parameters previously established to lead to high squeezing levels for the D1 line of 85Rb and then made small adjustments. Thus our results establish squeezing levels which can be obtained in practice, but do not necessarily represent the absolute best possible values which can be obtained by a full optimization of all parameters for each case. In addition to intrinsic effects due to the atomic level structure, the measured squeezing level is also affected by technical limitations in the apparatus such as losses on the vapor cell windows, the efficiency of the photodetectors, and the quality of polarization filtering to remove pump light. These effects are not very sensitive to the precise laser wavelengths and so are effectively constant for the four systems studied here.

With careful optimization we have measured squeezing levels as high as −8.8 dB using the D1 line of 85Rb [12

12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

]. At these high squeezing levels, small losses on the cell windows and other optics, and detector inefficiency, play an important role. The photodiodes we are using have a nominal efficiency of 0.94 and, including other optical losses after the atomic vapor, we estimate an actual detection efficiency of 0.90(3) (all uncertainties are 1 standard deviation combined statistical and systematic). Given a detection efficiency of 90%, the measured squeezing can never be higher than −10 dB, even if the source produces beams that are more highly squeezed.

In comparing the two isotopes, and the two transitions for each isotope, we will principally be concerned with adjusting the laser tunings. Starting with 85Rb D1 line, the one-photon detuning, Δ, was set to be about 0.8 GHz blue of the indicated transition (see Fig. 1). The two-photon detuning, δ, was adjusted to give 4WM gain. The exact value depends on the pump laser power and detuning due to AC Stark shifts. The highest squeezing does not generally correspond to the laser tunings that give the highest 4WM gain. Small adjustments of Δ and δ were made to find the highest squeezing. Typically the value of δ for the highest squeezing is a few MHz larger than the value for the highest gain. Once the point of highest squeezing was determined, the value of δ was left fixed and Δ was varied. Thus our data represents one cut through a multidimensional parameter space. In switching from 85Rb to 87Rb we also changed the pump power and cell temperature, as discussed below.

For each value of Δ we measured the intensity-difference noise relative to the SQL along with the input probe power and the output probe and conjugate powers. Most of our data is not well described by the ideal phase insensitive amplifier model (even after correcting for detector losses). More useful is a slightly expanded model in which we allow for some intrinsic loss in the medium [12

12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

]. Under the conditions of our measurements, the conjugate is much farther detuned from the nearest atomic line than the probe (νHF+Δ+δ vs. Δ). We assume, therefore, that any loss processes, such as one-photon or Raman transitions, act mainly on the probe. Based on this assumption, we model the medium as having a uniformly distributed gain, as being transparent for the conjugate, and as having a uniformly distributed absorption for the probe beam. In practice, for doing numerical calculations, we treat the medium as being composed of a large number of stages (N) of ideal amplifier gain (each with a gain g slightly greater than 1) interspersed with N beamsplitters (each with a transmission t slightly less than 1). Since loss is modeled by beamsplitters which add only vacuum noise, this model represents a minimal extension of the ideal lossless phase insensitive amplifier model. Given values of g and t the model calculates the power ratios (probe out)/(probe in) and (conjugate out)/(probe in) and the intensity-difference squeezing. To determine g and t we adjust their values until the model reproduces the two measured power ratios. Since there are two adjustable parameters, we can always find values that simultaneously reproduce both measured ratios. Given that the choice of N is arbitrary (as long as it is large), we report below the total inferred gain, G=gN, and the total inferred probe transmission, T=tN, of the entire system, rather than g and t themselves. Determining g and t (done from the power measurements alone) also determines the expected level of intensity-difference squeezing. After adjusting the predicted level of intensity-difference squeezing for detection efficiency we can compare it to the experimentally measured value. More detail can be found in [12

12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

].

We now present a summary of the noise reduction levels observed when using the D1 (795 nm) and D2 (780 nm) lines of both Rb isotopes.

3. Observed quantum noise reduction

3.1 85Rb D1 line

Figure 2
Fig. 2 Observed squeezing levels for the D1 (circles) and D2 (triangles) lines in 85Rb and 87Rb as a function of pump detuning. The two-photon detuning, δ, was held fixed in each of the four scans. For 85Rb the pump power was 400 mW; for 87Rb 700 mW.
(left panel, circles) shows the squeezing as a function of pump detuning Δ for a fixed two-photon detuning δ, pump power, cell temperature and crossing angle using the D1 line of 85Rb. A more extensive discussion of the intensity-difference noise reduction using this line can be found in [12

12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

]. The optimal noise reduction in this data set, −8.0(2) dB, was observed for Δ=0.8 GHz. As noted earlier, at high levels of noise reduction the measured value is quite sensitive to small losses and hence small changes in the experimental setup. For 85Rb, the excited state hyperfine structure is not resolved and thus Δ is measured from the peak of the Doppler broadened line originating on the F1 = 2 ground state level (see Fig. 1). The optimal pump power is a function of other parameters. Depending on the detuning Δ self-focusing/defocusing effects in the non-linear medium can become important. We found empirically that 400 mW, with a waist of 550 μm (1/e2 intensity radius) in the cell, worked well.

Figure 3
Fig. 3 The gain (G; blue diamonds) and probe transmission (T; green squares) inferred from the measured probe and conjugate powers using the extended ideal amplifier model, along with the measured squeezing (red dots), which was previously shown in Fig. 2. The grey band is the calculated squeezing from the model assuming a detection efficiency of 0.90(3). The width of the band reflects the uncertainty in the detection efficiency. That the model does not work well for either of the D2 lines shows that, in addition to 4WM, there are other processes operating which add noise.
shows the gain and probe transmission (expressed in dB's) inferred from the measured probe and conjugate powers using the extension of the ideal amplifier model discussed in the text. Also shown (grey shaded region) are the expected squeezing levels calculated from those gain and probe transmission values, accounting for the final detection efficiency. Over most of the tuning range, the observed squeezing levels for the 85Rb D1 line agree well with the levels predicted from the gain and transmission inferred from the probe and conjugate powers.

3.2 85Rb D2 line

As shown in Fig. 2, data taken using the D2 line of 85Rb also shows quantum noise reduction below the SQL. Although the level of noise reduction is not as impressive as that observed using the D1 line, the levels seen here are comparable to the best levels of quantum noise reduction observed in other atomic 4WM experiments. The best squeezing is observed for a pump detuning ≈1.5 times larger than that for the D1 line.

The curves in Fig. 3 for the D2 line show some important differences from those for the D1 line. The observed probe and conjugate powers, when analyzed through the model, result in a low inferred probe transmission even for large detunings. Most tellingly, the squeezing levels calculated from the model are significantly higher than those actually observed, strongly suggesting the existence of an additional noise mechanism beyond those included in the model. Unlike the case of the 85Rb D1 line, the observed probe and conjugate powers cannot be reconciled with the observed squeezing levels simply by invoking loss on the probe. The numerical values of the gain and transmission calculated from the model thus cannot be considered reliable; the value of the model is to show that there is a qualitative difference between the D2 and D1 lines.

3.3 87Rb D1 line

In 87Rb, the hyperfine splitting in the ground state is larger (νHF = 6.8 GHz) than in 85Rb (νHF = 3.0 GHz). This increase in νHF leads to a larger detuning from resonance for the lambda system composed of one conjugate photon and one pump photon (Fig. 1). Given the larger detuning, we expect a smaller nonlinear susceptibility relative to 85Rb for the same pump power [22

22. M. D. Lukin, A. B. Matsko, Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999). [CrossRef]

]. In order to raise the gain we increased the pump power from 400 mW (used for 85Rb) to 700 mW, the maximum power available, and also raised the cell temperature. Under these conditions we measure a gain [simple (probe power out)/(probe power in), not the gain inferred from the model] of 5for 85Rb, and 4 for 87Rb when the laser tunings are optimized for the best noise reduction in each case. In 87Rb the excited state hyperfine structure is partially resolved and thus Δ is measured from the peak of the Doppler broadenedF1=1F=2transition. We observe a maximum squeezing level of −7.8(2) dB for Δ=1.6 GHz.

The inferred probe transmission curve seen here (Fig. 3) is similar in shape to that observed for the D1 line of 85Rb but the value of Δ where the probe transmission becomes high is significantly larger for 87Rb than 85Rb, even though the Doppler widths of the 87Rb and 85Rb lines are nearly identical. This increased absorption at small Δ turns out to have a technical origin: although the Rb cell nominally contains only 87Rb, there is a few percent of residual 85Rb present. The relative positions of the absorption lines are such that the 85Rb introduces extra absorption for the probe. Figure 4
Fig. 4 Transmission spectrum of the probe at the D1 line in 87Rb as a function of frequency. The absorption dips of 87Rb and 85Rb are labeled. The pump frequency is held constant, marked by the dotted (green) line. When the pump and probe frequency difference is ≈6.8 GHz, 4WM gain is observed. The dashed (blue) curve shows a curve fit of the 87Rb absorption dip in the absence of 85Rb. It shows, qualitatively, that the absorption of the probe is mostly due to residual 85Rb in the vapor cell. For this scan the cell temperature was raised to ≈130 °C.
shows the probe transmission as a function of frequency. The 4WM gain feature occurs in a spectral region where there is significant absorption by 85Rb. As the pump is tuned further blue, the 4WM feature also moves blue, i.e. away from the 85Rb absorption. Presumably the need to move the 4WM peak away from the 85Rb absorption is the main reason that the optimum squeezing here requires a significantly larger Δ than in 85Rb. If a pure 87Rb cell were available, the optimum squeezing level could be obtained for a smaller Δ with reduced pump power. While it would obviously be advantageous to work with a higher purity sample, even with the level of 85Rb contamination found in our current cell one can select laser parameters which produce high levels of quantum noise reduction.

Despite the extra complication of contamination by 85Rb, the data in the region of good squeezing is well described by the model. Although we have changed parameters to adjust the gain, we see no evidence of a qualitative difference between the 85Rb and 87Rb D1 lines.

3.4 87Rb D2 line

Although we observe squeezing at the 87Rb D2 line, the noise reduction is the lowest of the four studied cases. As was seen with 85Rb, the D2 line requires a larger detuning than the D1 line. As for 85Rb D2, the probe absorption inferred from the model is significant even at these large detunings. Again, the squeezing levels predicted by the model are significantly higher than the observed levels, signaling that an additional noise mechanism is at work.

4. Discussion

The second important difference (noted also in [26

26. F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, “Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line,” Phys. Rev. A 55(5), 3710–3718 (1997). [CrossRef]

]) is that the Clebsch-Gordon coefficients in the D1 line are such that it supports simultaneous CPT dark states for transitions involving both excited state hyperfine levels. This is not true for the D2 line and thus one expects, in general, that it is easier to build up ground state coherences using the D1 rather than the D2 line. The ground state coherence enhances the nonlinear gain, and hence we expect to see a larger nonlinear gain in the D1 case. These two effects are consistent with our observation that the D1 line is better than the D2 line for the generation of twin beams.

While these considerations might suggest that the D1 line is a better choice for any type of non-linear process, it is worth noting that Novikova, et al. [27

27. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “ Comparison of 87Rb N-resonances for D1 and D2 transitions, ” Opt. Lett. 31(15), 2353 (2006). [CrossRef] [PubMed]

] have found that the D2 line provides a better three photon absorption “N-resonance” signal [28

28. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002). [CrossRef]

] than the D1 line.

5. Conclusion

In this paper we have demonstrated quantum noise reduction measurements for both 85Rb and 87Rb using both the D1 and D2 transition lines. With some adjustments in parameters the same basic laser tuning scheme works for all four systems. The optimum choice of pump laser tuning is a balance between the need to tune close to the atomic line in order to have gain and the need to tune away from the line to reduce probe losses. A minimal extension of the ideal amplifier model, allowing for imperfect transmission of the probe beam in the gain medium, shows good agreement with the observations for the D1 lines but not for the D2 lines, pointing to an additional source of noise for the D2 lines. Despite competing effects, there is a range of parameters over which each system approximates, to a greater or lesser degree, an ideal double-lambda 4WM system. We believe that these results are general enough to suggest that applying the same methodology to other systems with similar level structure would result in quantum noise reduction as well.

Acknowledgements

R. C. P. was supported by a grant from the Intelligence Community Postdoctoral Research Program.

References and links

1.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985). [CrossRef] [PubMed]

2.

A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett. 36(2), 93–98 (1996). [CrossRef]

3.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004). [CrossRef] [PubMed]

4.

B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]

5.

I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98(24), 243602 (2007). [CrossRef] [PubMed]

6.

K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008). [CrossRef] [PubMed]

7.

G. Hètet, B. C. Buchler, O. Glöeckl, M. T. L. Hsu, A. M. Akulshin, H. A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16(10), 7369–7381 (2008). [CrossRef] [PubMed]

8.

G. Hétet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40(1), 221–226 (2007). [CrossRef]

9.

S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98 (2008). [CrossRef]

10.

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72(3), 033601 (2005). [CrossRef]

11.

P. D. Lett, “Correlated photons for correlated atoms,” J. Mod. Opt. 51, 1817 (2004).

12.

C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]

13.

J. Laurat, L. Longchambon, C. Fabre, and T. Coudreau, “Experimental investigation of amplitude and phase quantum correlations in a type II optical parametric oscillator above threshold: from nondegenerate to degenerate operation,” Opt. Lett. 30(10), 1177–1179 (2005). [CrossRef] [PubMed]

14.

H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008). [CrossRef] [PubMed]

15.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]

16.

R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009). [CrossRef] [PubMed]

17.

V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]

18.

E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008). [CrossRef] [PubMed]

19.

C. M. Caves, “Quantum Limits on Noise in Linear-Amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982). [CrossRef]

20.

M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158(1-6), 273–286 (1998). [CrossRef]

21.

M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81(13), 2675–2678 (1998). [CrossRef]

22.

M. D. Lukin, A. B. Matsko, Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999). [CrossRef]

23.

M.D. Lukin, P.R. Hemmer, and M.O. Scully, “Resonant nonlinear optics in phase coherent media,” in Advances in Atomic, Molecular, and Optical Physics 42, Elsevier (1999).

24.

M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002). [CrossRef]

25.

D. A. Steck, “Rubidium 85 D line data,”, http://steck.us/alkalidata (revision 0.2 1 September 2008); D.A. Steck, “Rubidium 87 D line data,” http://steck.us/alkalidata (revision 2.1, 1 September 2008).

26.

F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, “Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line,” Phys. Rev. A 55(5), 3710–3718 (1997). [CrossRef]

27.

I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “ Comparison of 87Rb N-resonances for D1 and D2 transitions, ” Opt. Lett. 31(15), 2353 (2006). [CrossRef] [PubMed]

28.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002). [CrossRef]

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: July 22, 2009
Revised Manuscript: August 21, 2009
Manuscript Accepted: August 25, 2009
Published: September 3, 2009

Citation
R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, "Quantum correlated light beams from non-degenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb," Opt. Express 17, 16722-16730 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16722


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55(22), 2409–2412 (1985). [CrossRef] [PubMed]
  2. A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, “Squeezing with cold atoms,” Europhys. Lett. 36(2), 93–98 (1996). [CrossRef]
  3. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004). [CrossRef] [PubMed]
  4. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurásek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432(7016), 482–486 (2004). [CrossRef] [PubMed]
  5. I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, “Optimal control of light pulse storage and retrieval,” Phys. Rev. Lett. 98(24), 243602 (2007). [CrossRef] [PubMed]
  6. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100(9), 093601 (2008). [CrossRef] [PubMed]
  7. G. Hètet, B. C. Buchler, O. Glöeckl, M. T. L. Hsu, A. M. Akulshin, H. A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16(10), 7369–7381 (2008). [CrossRef] [PubMed]
  8. G. Hétet, O. Glockl, K. A. Pilypas, C. C. Harb, B. C. Buchler, H. A. Bachor, and P. K. Lam, “Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line,” J. Phys. B 40(1), 221–226 (2007). [CrossRef]
  9. S. W. Du, J. M. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98 (2008). [CrossRef]
  10. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72(3), 033601 (2005). [CrossRef]
  11. P. D. Lett, “Correlated photons for correlated atoms,” J. Mod. Opt. 51, 1817 (2004).
  12. C. F. McCormick, A. M. Marino, V. Boyer, and P. D. Lett, “Strong low-frequency quantum correlations from a four-wave-mixing amplifier,” Phys. Rev. A 78(4), 043816 (2008). [CrossRef]
  13. J. Laurat, L. Longchambon, C. Fabre, and T. Coudreau, “Experimental investigation of amplitude and phase quantum correlations in a type II optical parametric oscillator above threshold: from nondegenerate to degenerate operation,” Opt. Lett. 30(10), 1177–1179 (2005). [CrossRef] [PubMed]
  14. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10-dB quantum-noise reduction,” Phys. Rev. Lett. 100(3), 033602 (2008). [CrossRef] [PubMed]
  15. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009). [CrossRef] [PubMed]
  16. R. C. Pooser, A. M. Marino, V. Boyer, K. M. Jones, and P. D. Lett, “Low-noise amplification of a continuous-variable quantum state,” Phys. Rev. Lett. 103(1), 010501 (2009). [CrossRef] [PubMed]
  17. V. Boyer, A. M. Marino, R. C. Pooser, and P. D. Lett, “Entangled images from four-wave mixing,” Science 321(5888), 544–547 (2008). [CrossRef] [PubMed]
  18. E. E. Mikhailov and I. Novikova, “Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor,” Opt. Lett. 33(11), 1213–1215 (2008). [CrossRef] [PubMed]
  19. C. M. Caves, “Quantum Limits on Noise in Linear-Amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982). [CrossRef]
  20. M. S. Shahriar and P. R. Hemmer, “Generation of squeezed states and twin beams via non-degenerate four-wave mixing in a Λ system,” Opt. Commun. 158(1-6), 273–286 (1998). [CrossRef]
  21. M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant enhancement of parametric processes via radiative interference and induced coherence,” Phys. Rev. Lett. 81(13), 2675–2678 (1998). [CrossRef]
  22. M. D. Lukin, A. B. Matsko, Fleischhauer, and M. O. Scully, “Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence,” Phys. Rev. Lett. 82(9), 1847–1850 (1999). [CrossRef]
  23. M. D. Lukin, P. R. Hemmer, and M.O. Scully, "Resonant nonlinear optics in phase coherent media," in Advances in Atomic, Molecular, and Optical Physics 42, Elsevier (1999).
  24. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, “Coherent population trapping resonances in thermal 85Rb vapor: D1 versus D2 line excitation,” Opt. Lett. 27(16), 1472–1474 (2002). [CrossRef]
  25. D. A. Steck, "Rubidium 85 D line data," http://steck.us/alkalidata (revision 0.2 1 September 2008); D. A. Steck, "Rubidium 87 D line data," http://steck.us/alkalidata (revision 2.1, 1 September 2008).
  26. F. Renzoni, W. Maichen, L. Windholz, and E. Arimondo, "Coherent population trapping with losses observed on the Hanle effect of the D1 sodium line," Phys. Rev. A 55(5), 3710-;3718 (1997). [CrossRef]
  27. I. Novikova, D. F. Phillips, A. S. Zibrov, R. L. Walsworth, A. V. Taichenachev, and V. I. Yudin, “ Comparison of 87Rb N-resonances for D1 and D2 transitions,” Opt. Lett. 31(15), 2353 (2006). [CrossRef] [PubMed]
  28. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, “Observation of a three-photon electromagnetically induced transparency in hot atomic vapor,” Phys. Rev. A 65(4), 043817 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited