## Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature

Optics Express, Vol. 17, Issue 19, pp. 16885-16897 (2009)

http://dx.doi.org/10.1364/OE.17.016885

Acrobat PDF (1006 KB)

### Abstract

Multipixel silicon avalanche photodiodes (Si APDs) are novel photodetectors used as silicon photomultipliers (SiPMs), or multipixel photon counter (MPPC), because they have fast response, photon-number resolution, and a high count rate; one drawback, however, is the high dark count rate. We developed a system for cooling an MPPC to liquid nitrogen temperature and thus reduce the dark count rate. Our system achieved dark count rates of <0.2 cps. Here we present the afterpulse probability, counting capability, timing jitter, and photon-number resolution of our system at 78.5 K and 295 K.

© 2009 OSA

## 1. Introduction

1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature **409**(6816), 46–52 (2001). [CrossRef] [PubMed]

2. M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers,” Phys. Rev. A **78**(2), 022320 (2008). [CrossRef]

3. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express **14**(26), 13073–13082 (2006). [CrossRef] [PubMed]

4. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. **93**(3), 031109 (2008). [CrossRef]

5. E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. **92**(11), 113602 (2004). [CrossRef] [PubMed]

7. M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, M. Szawlowski, and M. Kapusta, “Subnanosecond timing with large area avalanche photodiodes and LSO scintillator,” IEEE Trans. Nucl. Sci. **43**(3), 1298–1302 (1996). [CrossRef]

9. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. **91**(4), 041114 (2007). [CrossRef]

10. B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics **2**(7), 425–428 (2008). [CrossRef]

*N*by employing

*N*detectors and a 1-by-

*N*optical switch [11

11. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Reduced deadtime and higher rate photon-counting detection using multiplexed detector array,” J. Mod. Opt. **54**(2), 337–352 (2007). [CrossRef]

12. K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. **28**(1), 52–54 (2003). [CrossRef] [PubMed]

14. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A **68**(4), 043814 (2003). [CrossRef]

15. G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Methods **442**(1-3), 187–192 (2000). [CrossRef]

18. B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Calice/SiPM Collaboration, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods **563**(2), 368–376 (2006). [CrossRef]

19. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods **545**(3), 705–715 (2005). [CrossRef]

21. N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, G. Llosa, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst,” Nucl. Instrum. Methods **572**(1), 422–426 (2007). [CrossRef]

11. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Reduced deadtime and higher rate photon-counting detection using multiplexed detector array,” J. Mod. Opt. **54**(2), 337–352 (2007). [CrossRef]

20. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

21. N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, G. Llosa, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst,” Nucl. Instrum. Methods **572**(1), 422–426 (2007). [CrossRef]

23. M. Petasecca, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston, M. Ionica, A. Papi, G. U. Pignatel, and S. Haino, “Thermal and electrical characterization of silicon photomultiplier,” IEEE Trans. Nucl. Sci. **55**(3), 1686–1690 (2008). [CrossRef]

23. M. Petasecca, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston, M. Ionica, A. Papi, G. U. Pignatel, and S. Haino, “Thermal and electrical characterization of silicon photomultiplier,” IEEE Trans. Nucl. Sci. **55**(3), 1686–1690 (2008). [CrossRef]

25. K. Tsujino, M. Akiba, and M. Sasaki, “Experimental determination of the gain distribution of an avalanche phtodiode at low gain,” IEEE Electron Device Lett. **30**(1), 24–26 (2009). [CrossRef]

26. J. J. Fox, N. Woodard, and G. P. Lafyatis, “Characterization of cooled large-area silicon avalanche photodiodes,” Rev. Sci. Instrum. **70**(4), 1951–1956 (1999). [CrossRef]

## 2. Experimental setup and time response

20. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

27. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. **32**, 3894–3900 (1993). [PubMed]

## 3. Measurements of dark count rate, afterpulse probability, and photon detection efficiency

### 3.1 Dark count rate

16. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Methods **504**(1-3), 48–52 (2003). [CrossRef]

### 3.2 Afterpulse probability

*p*-

*n*junction of the APD while consuming the charge on the junction capacitor (see Fig. 4 ). The breakdown stops when the voltage at the junction drops below the breakdown voltage because of the charge reduction. The tail is produced due to the compensation current supplied through the resistor connected in series with the APD. Since the voltage at the junction is below the original level while the compensation current continues to flow, the heights of the afterpulses may be small on the tail.

*p*-

*n*junction increases with the time delay from the primary pulse, as discussed above, a smaller height pulse is expected at a shorter delay time. To clarify the mechanism, we investigated the dependence of the pulse height on the delay time. Figure 6 shows the two-dimensional frequency distribution of the delay time versus the pulse height. Afterpulses began to be generated at a delay time of around 100 ns; they had a small pulse-height. The pulse height increased with the delay time, while the number of counts reduced. The afterpulses finally reached the level of the signal pulses at a delay time of around 350 ns. These values of the delay time are consistent with the discussion of the tail, which has a length of 210 ns. However, afterpulses that are comparable in height to the primary pulses are also created shortly after the primary pulse. The number of such afterpulses is about 10% of the total number of afterpulses counted. At present, we do not know the mechanism behind the generation of such afterpulses.

28. J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. **39**(36), 6746–6753 (2000). [CrossRef]

### 3.3 Photon detection efficiency

20. P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express **15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

^{2}) was almost uniform, the intensity of the light incident on the MPPC was calculated from the intensity and the effective area of the MPPC. As a result, the number of incident photons per second was found to be 30 × 10

^{6}. The error in the measurement of the incident power was mainly due to the noise from the high-precision photodiode. The photon detection efficiencies shown in Fig. 8 are net values excluding the afterpulses. The photon detection efficiencies at 78.5 K are comparable with those at 295 K, within a 10% error.

## 4. Measurements of timing jitter and counting capability

### 4.1 Timing jitter

### 4.2 Counting capability

*R*).

*R*is derived from the following differential equation as a function of time

*t*:where

*r*,

*n*,

_{o}*t*, and

_{d}*N*are the repetition rate of light pulses, average number of output pulses per light pulse at R = 1, dead time, and number of pixels of the MPPC, respectively. The afterpulses and pulses generated by cross-talk are also included in

*n*, The first and second terms of the equation represent a decrease in the number of active pixels due to output pulse generation and an increase in the number due to reactivation of the dead pixels after the dead time, respectively. The solution to Eq. (1) is

_{o}## 5. Photon-number resolution and cross-talk probability

29. E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays,” IEEE Electron Device Lett. **29**(3), 218–220 (2008). [CrossRef]

*D*(

*V*) as a function of the output voltage

*V*was calculated using the following expressions:where

*A*is the total number of measured data;

*V*, the output voltage corresponding to the number of detections

_{n}*n*;

*σ*, the circuit noise; and

_{c}*σ*, the standard deviation of the pulse height distribution when a single photon is detected. The probability that

_{p}*n*photons are simultaneously detected,

*p*(

_{s}*n*), is expressed as follows:where

*p*(

_{th}*n*,

*m*) is a Poissonian distribution with a mean value

*m*, and

*p*is the cross-talk probability. The expression for

_{ct}*p*(

_{s}*n*) is the same as

*p*(

*n*) in [20

**15**(22), 14539–14549 (2007). [CrossRef] [PubMed]

*p*(

_{s}*n*) must be replaced by

*p*(

_{th}*n*,

*m*) in the second term of the numerator and the value

*n*in the second term of the denominator is replaced with

*m*. This means that a pulse generated by cross-talk is assumed to not generate another pulse. When Eq. (3) is used, the theoretical distributions fit the experimental ones better as compared to the case where the expression for

*p*(

*n*) is used. All the parameters obtained by fitting the theoretical distributions to the experimental ones are listed in Table 2 . The resolution for a single photon

*V*/(2

_{n}*σ*) is also listed in the table. At 78.5 K, the resolution was slightly lower while the cross-talk probability was considerably improved.

_{p}## 7. Conclusion

## Acknowledgements

## References and links

1. | E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature |

2. | M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers,” Phys. Rev. A |

3. | E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express |

4. | J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. |

5. | E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. |

6. | T. Moroder, M. Curty, and N. Lutkenhaus, “Detector decoy quantum key distribution,” arXiv:0811.0027v1 [quant-ph] (2008). |

7. | M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, M. Szawlowski, and M. Kapusta, “Subnanosecond timing with large area avalanche photodiodes and LSO scintillator,” IEEE Trans. Nucl. Sci. |

8. | V. N. Solovov, F. Neves, V. Chepel, M. I. Lopes, R. F. Marques, and A. J. P. L. Policarpo, “Low temperature performance of a large area avalanche photodiode,” J. Mod. Opt. |

9. | Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. |

10. | B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics |

11. | S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Reduced deadtime and higher rate photon-counting detection using multiplexed detector array,” J. Mod. Opt. |

12. | K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. |

13. | D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. |

14. | M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A |

15. | G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Methods |

16. | P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Methods |

17. | V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Methods |

18. | B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Calice/SiPM Collaboration, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods |

19. | A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods |

20. | P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express |

21. | N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, G. Llosa, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst,” Nucl. Instrum. Methods |

22. | E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Methods |

23. | M. Petasecca, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston, M. Ionica, A. Papi, G. U. Pignatel, and S. Haino, “Thermal and electrical characterization of silicon photomultiplier,” IEEE Trans. Nucl. Sci. |

24. | D. L. Robinson and B. D. Metscher, “Photon detection with cooled avalanche photodiodes,” Appl. Phys. Lett. |

25. | K. Tsujino, M. Akiba, and M. Sasaki, “Experimental determination of the gain distribution of an avalanche phtodiode at low gain,” IEEE Electron Device Lett. |

26. | J. J. Fox, N. Woodard, and G. P. Lafyatis, “Characterization of cooled large-area silicon avalanche photodiodes,” Rev. Sci. Instrum. |

27. | H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. |

28. | J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. |

29. | E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays,” IEEE Electron Device Lett. |

**OCIS Codes**

(040.0040) Detectors : Detectors

(040.1240) Detectors : Arrays

(040.5160) Detectors : Photodetectors

(040.5570) Detectors : Quantum detectors

(040.1345) Detectors : Avalanche photodiodes (APDs)

**ToC Category:**

Detectors

**History**

Original Manuscript: June 22, 2009

Revised Manuscript: August 13, 2009

Manuscript Accepted: August 31, 2009

Published: September 8, 2009

**Citation**

M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express **17**, 16885-16897 (2009)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-16885

Sort: Year | Journal | Reset

### References

- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
- M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers,” Phys. Rev. A 78(2), 022320 (2008). [CrossRef]
- E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors,” Opt. Express 14(26), 13073–13082 (2006). [CrossRef] [PubMed]
- J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93(3), 031109 (2008). [CrossRef]
- E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y. Yamamoto, “Direct observation of nonclassical photon statistics in parametric down-conversion,” Phys. Rev. Lett. 92(11), 113602 (2004). [CrossRef] [PubMed]
- T. Moroder, M. Curty, and N. Lutkenhaus, “Detector decoy quantum key distribution,” arXiv:0811.0027v1 [quant-ph] (2008).
- M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, M. Szawlowski, and M. Kapusta, “Subnanosecond timing with large area avalanche photodiodes and LSO scintillator,” IEEE Trans. Nucl. Sci. 43(3), 1298–1302 (1996). [CrossRef]
- V. N. Solovov, F. Neves, V. Chepel, M. I. Lopes, R. F. Marques, and A. J. P. L. Policarpo, “Low temperature performance of a large area avalanche photodiode,” J. Mod. Opt. 51, 1351–1357 (2004).
- Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
- B. E. Kardynał, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008). [CrossRef]
- S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Reduced deadtime and higher rate photon-counting detection using multiplexed detector array,” J. Mod. Opt. 54(2), 337–352 (2007). [CrossRef]
- K. Banaszek and I. A. Walmsley, “Photon counting with a loop detector,” Opt. Lett. 28(1), 52–54 (2003). [CrossRef] [PubMed]
- D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. 28(23), 2387–2389 (2003). [CrossRef] [PubMed]
- M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A 68(4), 043814 (2003). [CrossRef]
- G. Bondarenko, P. Buzhan, B. Dolgoshein, V. Golovin, E. Guschin, A. Ilyin, V. Kaplin, A. Karakash, R. Klanner, V. Pokachalov, E. Popova, and K. Smirnov, “Limited Geiger-mode microcell silicon photodiode: new results,” Nucl. Instrum. Methods 442(1-3), 187–192 (2000). [CrossRef]
- P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible application,” Nucl. Instrum. Methods 504(1-3), 48–52 (2003). [CrossRef]
- V. Golovin and V. Saveliev, “Novel type of avalanche photodetector with Geiger mode operation,” Nucl. Instrum. Methods 518(1-2), 560–564 (2004). [CrossRef]
- B. Dolgoshein, V. Balagura, P. Buzhan, M. Danilov, L. Filatov, E. Garutti, M. Groll, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, V. Korbel, H. Meyer, R. Mizuk, V. Morgunov, E. Novikov, P. Pakhlov, E. Popova, V. Rusinov, F. Sefkow, E. Tarkovsky, and I. Tikhomirov, “Calice/SiPM Collaboration, “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Methods 563(2), 368–376 (2006). [CrossRef]
- A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, and M. Teshima, “A test of silicon photomultipliers as readout for PET,” Nucl. Instrum. Methods 545(3), 705–715 (2005). [CrossRef]
- P. Eraerds, M. Legré, A. Rochas, H. Zbinden, and N. Gisin, “SiPM for fast photon-counting and multiphoton detection,” Opt. Express 15(22), 14539–14549 (2007). [CrossRef] [PubMed]
- N. Dinu, R. Battiston, M. Boscardin, G. Collazuol, F. Corsi, G. F. Dalla Betta, A. Del Guerra, G. Llosa, M. Ionica, G. Levi, S. Marcatili, C. Marzocca, C. Piemonte, G. Pignatel, A. Pozza, L. Quadrani, C. Sbarra, and N. Zorzi, “Development of the first prototypes of silicon photomultiplier (SiPM) at ITC-irst,” Nucl. Instrum. Methods 572(1), 422–426 (2007). [CrossRef]
- E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, and R. Rocca, “Silicon photomultipliers and their bio-medical applications,” Nucl. Instrum. Methods 571(1-2), 130–133 (2007). [CrossRef]
- M. Petasecca, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston, M. Ionica, A. Papi, G. U. Pignatel, and S. Haino, “Thermal and electrical characterization of silicon photomultiplier,” IEEE Trans. Nucl. Sci. 55(3), 1686–1690 (2008). [CrossRef]
- D. L. Robinson and B. D. Metscher, “Photon detection with cooled avalanche photodiodes,” Appl. Phys. Lett. 51(19), 1493–1494 (1987). [CrossRef]
- K. Tsujino, M. Akiba, and M. Sasaki, “Experimental determination of the gain distribution of an avalanche phtodiode at low gain,” IEEE Electron Device Lett. 30(1), 24–26 (2009). [CrossRef]
- J. J. Fox, N. Woodard, and G. P. Lafyatis, “Characterization of cooled large-area silicon avalanche photodiodes,” Rev. Sci. Instrum. 70(4), 1951–1956 (1999). [CrossRef]
- H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993). [PubMed]
- J. G. Rarity, T. E. Wall, K. D. Ridley, P. C. M. Owens, and P. R. Tapster, “Single-photon counting for the 1300-1600-nm range by use of Peltier-cooled and passively quenched InGaAs avalanche photodiodes,” Appl. Opt. 39(36), 6746–6753 (2000). [CrossRef]
- E. Sciacca, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica, and E. Rimini, “Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays,” IEEE Electron Device Lett. 29(3), 218–220 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.