OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 19 — Sep. 14, 2009
  • pp: 17150–17155
« Show journal navigation

Interaction of self-trapped beams in high index glass

Elena D'Asaro, Schirin Heidari-Bateni, Alessia Pasquazi, Gaetano Assanto, José Gonzalo, Javier Solis, and Carmen N. Afonso  »View Author Affiliations


Optics Express, Vol. 17, Issue 19, pp. 17150-17155 (2009)
http://dx.doi.org/10.1364/OE.17.017150


View Full Text Article

Acrobat PDF (1654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We observe attraction, repulsion and energy exchange between two self-trapped beams in a heavy-metal-oxide glass exhibiting a Kerr-like response with multiphoton absorption. The coherent interaction between spatial solitons is controlled by their relative phase and modelled by a nonlinear dissipative Schrödinger equation.

© 2009 OSA

1. Introduction

The propagation and interaction of self-trapped optical beams or bright spatial solitons have intrigued the scientific community for decades [1

1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]

7

7. C. Conti, and G. Assanto, “Nonlinear Optics Applications: Bright Spatial Solitons”, in Encyclopaedia of Modern Optics, eds. R. D. Guenther, D. G. Steel and L. Bayvel, vol. 5 (Elsevier, Oxford, 2004).

]. Solitons in more than one transverse dimension undergo catastrophic beam collapse in Kerr media [1

1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]

,2

2. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965). [CrossRef]

]; hence, stabilizing mechanisms such as saturation or nonlocality, are required for stable propagation [4

4. N. N. Akhmediev, and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman Hall, London, 1997).

7

7. C. Conti, and G. Assanto, “Nonlinear Optics Applications: Bright Spatial Solitons”, in Encyclopaedia of Modern Optics, eds. R. D. Guenther, D. G. Steel and L. Bayvel, vol. 5 (Elsevier, Oxford, 2004).

]. Due to the intrinsic instability of two-dimensional (2D + 1) Kerr solitons, several nonlinear materials cannot be employed for their propagation in bulk, despite the growing attention on soliton based all-optical devices [8

8. M. Shalaby and A. Barthelemy, “Experimental spatial soliton trapping and switching,” Opt. Lett. 16(19), 1472 (1991). [CrossRef] [PubMed]

14

14. G. Assanto and M. Peccianti, “Routing light at will,” J. Nonlinear Opt. Phys. Mater. 16(1), 37–48 (2007). [CrossRef]

]. In general, glasses with an ultrafast purely Kerr response are in the category of unsuitable materials for 2D + 1 solitons and, due to their small nonlinearity, require pulsed excitations with high intensities.

Interactions between solitons have been investigated in various systems [13

13. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “All Optical Switching and Logic Gating with Spatial Solitons in Liquid Crystals,” Appl. Phys. Lett. 81(18), 3335–3337 (2002). [CrossRef]

,15

15. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991). [CrossRef] [PubMed]

27

27. A. Fratalocchi, A. Piccardi, M. Peccianti, and G. Assanto, “Nonlinearly controlled angular momentum of soliton clusters,” Opt. Lett. 32(11), 1447–1449 (2007). [CrossRef] [PubMed]

]. Hereby, based on the results we recently obtained in high index glasses of the heavy-metal-oxide (HMO) family Nb2O5-PbO-GO2 [28

28. J. Gonzalo, H. Fernandez, J. Solis, D. Munoz-Martin, J. M. Fernandez-Navarro, C. N. Afonso, and J. L. G. Fierro, “Enhanced nonlinear optical properties of oxygen deficient lead-niobium-germanate film glasses,” Appl. Phys. Lett. 90(25), 251907 (2007). [CrossRef]

] with the aid of three-photon absorption at wavelengths around 800nm [29

29. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]

,30

30. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis, “Transverse nonlinear optics in heavy metal oxide glass,” Phys. Rev. A 77(4), 043808 (2008). [CrossRef]

], we investigate the interaction of two coherent 2D + 1 soliton-like beams in such dissipative medium [25

25. E. A. Ultanir, G. I. Stegeman, C. H. Lange, and F. Lederer, “Coherent interactions of dissipative spatial solitons,” Opt. Lett. 29(3), 283–285 (2004). [CrossRef] [PubMed]

,31

31. E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A 49(4), 2806–2811 (1994). [CrossRef] [PubMed]

,32

32. N. Akhmediev, and A. Ankiewicz, Dissipative Solitons (Springer, New York, 2005).

]. By controlling the relative phase of the self-trapped beams excited with picosecond pulses in the first telecom spectral window, we observed repulsion, attraction and energy exchange; the overall transmittance showing the fingerprint of three photon absorption.

2. Experimental setup and model

We used single 25 ps pulses produced at 800nm by a 10Hz repetition-rate optical parametric generator. The beam was spatially filtered to the fundamental TEM00 mode. Polarizing optics and half-wave plates allowed adjusting both peak power (energy) and polarization. Two parallel copropagating beams were obtained in a Mach-Zehnder arrangement and their relative phase was controlled with a tilted thin glass slide. The beams were gently focused to a waist of 13μm on the input facet of a 25Nb2O5-25PbO-50GeO2 mol% glass sample of thickness 5.75mm, in order to allow a propagation length exceeding four Rayleigh lengths along z. Images of the output beam were acquired with an infrared enhanced CCD camera through a microscope objective. Dual channel boxcar averager and computer controls were used to filter out the noise as well as undesired pulses of energy outside the prescribed range.

Laser beam propagation in optical dielectrics with a Kerr response and dissipation can be described by a nonlinear Schrödinger equation with a corrective term for three-photon absorption (3PA) [25

25. E. A. Ultanir, G. I. Stegeman, C. H. Lange, and F. Lederer, “Coherent interactions of dissipative spatial solitons,” Opt. Lett. 29(3), 283–285 (2004). [CrossRef] [PubMed]

,29

29. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]

,30

30. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis, “Transverse nonlinear optics in heavy metal oxide glass,” Phys. Rev. A 77(4), 043808 (2008). [CrossRef]

]:
2ikAz+2A+n2k2η0|A|2A+ikβ3(n02η0)2|A|3A=0
(1)
with A = A(x,y,z) the slowly varying amplitude of the electric field E(x,y,z,t) = ½A(x,y,z)exp(ikz-iωt) + cc, k the wavenumber, η0 the vacuum impedance, n0 the refractive index; n2 is the Kerr coefficient as in n(I) = n0 + n2I, with I the intensity and β3 is the 3PA coefficient as defined by I/z=β3I3. For the numerical simulations we employed a (2D + 1) beam propagator with a standard Crank-Nicolson scheme and Gaussian spatio-temporal excitation, using n2=5×1015cm2/W and β3=4×104cm3/GW2 as best fit values [29

29. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]

].

3. Self-trapped beams and their interaction

Self-trapped beams in a Kerr system with nonlinear absorption can propagate if excited by a power close to the material dependent critical value PCR = λ2/2πn0n2 [33

33. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000). [CrossRef]

]. For lower powers the beam diffracts, for higher powers it looses part of its energy through nonlinear absorption and then reshapes and diffracts into a Bessel-like beam [24

24. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004). [CrossRef] [PubMed]

]. Figure 1
Fig. 1 Nonlinear beam propagation in a 5.75mm-long sample of HMO: input (leftmost photograph) and output beam profiles for input peak power P<PCR (linear diffraction at 0.1μJ, power P≈PCR (self-trapping at 3.2 μJ), power P>PCR (beam reshaping at 4 μJ).
shows typical output profiles of a single beam propagating in the HMO sample for various peak-power excitations corresponding to P<PCR, P ≈PCR and P>PCR, respectively.

We investigated the interaction between two pulsed beams versus input pulse energy, initial separation and relative phase. The strength of the interaction was controlled by the separation and its nature by their relative phase. We show hereby our experimental results for an initial transverse distance of 40μm. By controlling the relative phase, attraction or repulsion or energy transfer between the self-trapped beams could be observed.

When the solitons are in phase they attract each other, until they eventually coalesce: Fig. 3(a)
Fig. 3 Attraction of in-phase 3.2μJ self-trapped beams for a 40μm initial separation. (a) CCD-acquired and (b) numerically simulated output profiles of individual (first two rows) and interacting solitons (bottom); (c) Corresponding measured and calculated transverse profiles along x; (d) simulated evolution of the two solitons in the plane xz. (e) Simulated evolution of in-phase self-trapped beams for 70μm initial separation, 3.2μJ excitation and propagation over 5cm: the merging generates a single self trapped beam with no sidelobes.
displays the experimental results for P ≈PCR along with the simulated behaviour in Fig. 3(b) according to Eq. (1). Figure 3(c) compares actual and simulated transverse profiles. During coalescence, the exceeding energy is radiated sideways around the solitons, as apparent in the numerical evolution displayed in Fig. 3(d) and in the data at the bottom of Fig. 3(a). At excitations higher than 5μJ, optical damage occurred near the output facet of the sample. Owing to the dissipative nature of the medium, an individual self-trapped beam can be obtained by properly choosing the interaction strength (i.e. the input separation) and the propagation length, as shown by the simulation in Fig. 3(e) for the same excitation but a larger initial separation and a longer propagation length.

For an input relative phase of π the 3.2μJ/pulse solitons repel one another, as visible in Fig. 4
Fig. 4 Repulsion of π out-of-phase self-trapped beams excited by 3.2μJ pulses for 40μm initial separation. (a) CCD-acquired and (b) numerically simulated output profiles of individual (first two rows) and interacting solitons (bottom); (c) Corresponding measured and calculated transverse profiles along x; (d) simulated evolution of the two solitons in the plane xz of propagation.
: after 5.75mm the distance between the beams along x increases from 40 to 80μm.

The HMO transmission versus total input energy for two-beam excitations is plotted in Fig. 5
Fig. 5 HMO transmission versus input energy/pulse for two identical interacting beams with relative phase φ = 0 and φ = π, respectively. Symbols are data and lines are fits based on Eq. (1).
for both mutual attraction and repulsion, respectively. The nonlinear losses of two interacting beams of given input energy always exceed those of single (or non-interacting) beams of equal energy, as expected due to the coherent nature of the interaction and the nonlinear dependence of 3PA on the intensity. Even in the case of repulsion, the initial proximity of the launched beams causes 3PA to be larger than in the one beam case (Fig. 2).

For intermediate values of the relative phase, energy exchange between the solitons was observed. For the same initial separation and energy as in Fig. 3 and Fig. 4, at relative phases of π/2 or 3π/2 the self-trapped beam which is phase-delayed with respect to the other spills and accumulates energy, eventually growing in intensity. Figure 6
Fig. 6 Energy exchange between self-trapped beams excited by 3.2μJ pulses and launched in-quadrature with a 40μm separation. (a) CCD-acquired and (b) numerically simulated output profiles of individual (first two rows) and interacting solitons out of phase by π/2 (third row) or 3π/2 (last row); (c) Corresponding measured and calculated transverse profiles along x. Simulated evolution in the plane xz for solitons out of phase by (d) π/2 and (e) 3π/2.
shows experimental results in good agreement with the numerical simulations.

4. Conclusions

In conclusion, we investigated the nonlinear interaction of self-trapped beams in a heavy-metal-oxide glass of the ternary system Nb2O5-GeO2-PbO, exciting solitons in the first window for fiber optical communications, i.e. in a spectral region where three-photon absorption provided transverse stabilization. We observed attraction, repulsion and energy exchange by controlling the relative phase of two coherent beams launched with a modest separation to allow their coherent interaction. The results, modeled with a nonlinear Schrödinger equation corrected for three-photon absorption, reveal the fingerprints of multiphoton losses with moderate propagation losses (~20%), making this ultrafast glass system a good candidate for soliton based interconnects.

Acknowledgements

This work was supported by the Italian Ministry for University and Research through an “Italy-Spain Integrated Action” (Grant no. IT1890/HI2006-0095, 2007) and by the Spanish Ministry of Science and Innovation (Grant TEC2008-01183).

References and links

1.

R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]

2.

P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965). [CrossRef]

3.

A. W. Snyder, D. J. Mitchell, L. Poladian, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 16(1), 21–23 (1991). [CrossRef] [PubMed]

4.

N. N. Akhmediev, and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman Hall, London, 1997).

5.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: Universality and diversity,” Science 286(5444), 1518–1523 (1999). [CrossRef] [PubMed]

6.

Y. S. Kivshar, and G. P. Agrawal, Optical Solitons (Academic Press, San Diego, 2003).

7.

C. Conti, and G. Assanto, “Nonlinear Optics Applications: Bright Spatial Solitons”, in Encyclopaedia of Modern Optics, eds. R. D. Guenther, D. G. Steel and L. Bayvel, vol. 5 (Elsevier, Oxford, 2004).

8.

M. Shalaby and A. Barthelemy, “Experimental spatial soliton trapping and switching,” Opt. Lett. 16(19), 1472 (1991). [CrossRef] [PubMed]

9.

P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, “Steerable optical waveguides formed by bright spatial solitons in AlGaAs,” Electron. Lett. 30(9), 726 (1994). [CrossRef]

10.

W. E. Torruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, “All-optical switching by spatial walk-off compensation and solitary-wave locking,” Appl. Phys. Lett. 68(11), 1449–1451 (1996). [CrossRef]

11.

G. Leo and G. Assanto, “Phase- and polarization-insensitive all-optical switching by self-guiding in quadratic media,” Opt. Lett. 22(18), 1391–1393 (1997). [CrossRef]

12.

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic, electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23(18), 1438–1440 (1998). [CrossRef]

13.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “All Optical Switching and Logic Gating with Spatial Solitons in Liquid Crystals,” Appl. Phys. Lett. 81(18), 3335–3337 (2002). [CrossRef]

14.

G. Assanto and M. Peccianti, “Routing light at will,” J. Nonlinear Opt. Phys. Mater. 16(1), 37–48 (2007). [CrossRef]

15.

J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991). [CrossRef] [PubMed]

16.

M. Shalaby, F. Reynaud, and A. Barthelemy, “Experimental observation of spatial soliton interactions with a π/2 relative phase difference,” Opt. Lett. 17(11), 778–780 (1992). [CrossRef] [PubMed]

17.

J. U. Kang, G. I. Stegeman, and J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21(3), 189–191 (1996). [CrossRef] [PubMed]

18.

V. Tikhonenko V, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable Nonlinear Medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996). [CrossRef] [PubMed]

19.

G. Leo, G. Assanto, and W. E. Torruellas, “Intensity-controlled interactions between vectorial spatial solitary waves in quadratic nonlinear media,” Opt. Lett. 22(1), 7–9 (1997). [CrossRef] [PubMed]

20.

B. Costantini, C. De Angelis, A. Barthelemy, A. Laureti Palma, and G. Assanto, “Polarization multiplexed χ(2) solitary waves interactions,” Opt. Lett. 22(18), 1376–1378 (1997). [CrossRef]

21.

Y. Baek, R. Schiek, G. I. Stegeman, I. Baumann, and W. Sohler, “Interactions between one-dimensional quadratic solitons,” Opt. Lett. 22(20), 1550–1552 (1997). [CrossRef]

22.

M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, “Nonlocal spatial soliton interactions in nematic liquid crystals,” Opt. Lett. 27(16), 1460–1462 (2002). [CrossRef]

23.

C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long range interactions between spatial solitons,” Nat. Phys. 2(11), 769–774 (2006). [CrossRef]

24.

A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004). [CrossRef] [PubMed]

25.

E. A. Ultanir, G. I. Stegeman, C. H. Lange, and F. Lederer, “Coherent interactions of dissipative spatial solitons,” Opt. Lett. 29(3), 283–285 (2004). [CrossRef] [PubMed]

26.

T.-S. Ku, M.-F. Shih, A. A. Sukhorukov, and Y. S. Kivshar, “Coherence controlled soliton interactions,” Phys. Rev. Lett. 94(6), 063904 (2005). [CrossRef] [PubMed]

27.

A. Fratalocchi, A. Piccardi, M. Peccianti, and G. Assanto, “Nonlinearly controlled angular momentum of soliton clusters,” Opt. Lett. 32(11), 1447–1449 (2007). [CrossRef] [PubMed]

28.

J. Gonzalo, H. Fernandez, J. Solis, D. Munoz-Martin, J. M. Fernandez-Navarro, C. N. Afonso, and J. L. G. Fierro, “Enhanced nonlinear optical properties of oxygen deficient lead-niobium-germanate film glasses,” Appl. Phys. Lett. 90(25), 251907 (2007). [CrossRef]

29.

A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]

30.

A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis, “Transverse nonlinear optics in heavy metal oxide glass,” Phys. Rev. A 77(4), 043808 (2008). [CrossRef]

31.

E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A 49(4), 2806–2811 (1994). [CrossRef] [PubMed]

32.

N. Akhmediev, and A. Ankiewicz, Dissipative Solitons (Springer, New York, 2005).

33.

G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000). [CrossRef]

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 15, 2009
Revised Manuscript: August 8, 2009
Manuscript Accepted: August 8, 2009
Published: September 11, 2009

Citation
Elena D'Asaro, Schirin Heidari-Bateni, Alessia Pasquazi, Gaetano Assanto, José Gonzalo, Javier Solis, and Carmen N. Afonso, "Interaction of self-trapped beams in high index glass," Opt. Express 17, 17150-17155 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-19-17150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13(15), 479–482 (1964). [CrossRef]
  2. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15(26), 1005–1008 (1965). [CrossRef]
  3. A. W. Snyder, D. J. Mitchell, L. Poladian, and F. Ladouceur, “Self-induced optical fibers: spatial solitary waves,” Opt. Lett. 16(1), 21–23 (1991). [CrossRef] [PubMed]
  4. N. N. Akhmediev, and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman Hall, London, 1997).
  5. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: Universality and diversity,” Science 286(5444), 1518–1523 (1999). [CrossRef] [PubMed]
  6. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons (Academic Press, San Diego, 2003).
  7. C. Conti, and G. Assanto, “Nonlinear Optics Applications: Bright Spatial Solitons”, in Encyclopaedia of Modern Optics, eds. R. D. Guenther, D. G. Steel and L. Bayvel, vol. 5 (Elsevier, Oxford, 2004).
  8. M. Shalaby and A. Barthelemy, “Experimental spatial soliton trapping and switching,” Opt. Lett. 16(19), 1472 (1991). [CrossRef] [PubMed]
  9. P. V. Mamyshev, A. Villeneuve, G. I. Stegeman, and J. S. Aitchison, “Steerable optical waveguides formed by bright spatial solitons in AlGaAs,” Electron. Lett. 30(9), 726 (1994). [CrossRef]
  10. W. E. Torruellas, G. Assanto, B. L. Lawrence, R. A. Fuerst, and G. I. Stegeman, “All-optical switching by spatial walk-off compensation and solitary-wave locking,” Appl. Phys. Lett. 68(11), 1449–1451 (1996). [CrossRef]
  11. G. Leo and G. Assanto, “Phase- and polarization-insensitive all-optical switching by self-guiding in quadratic media,” Opt. Lett. 22(18), 1391–1393 (1997). [CrossRef]
  12. L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic, electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23(18), 1438–1440 (1998). [CrossRef]
  13. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “All Optical Switching and Logic Gating with Spatial Solitons in Liquid Crystals,” Appl. Phys. Lett. 81(18), 3335–3337 (2002). [CrossRef]
  14. G. Assanto and M. Peccianti, “Routing light at will,” J. Nonlinear Opt. Phys. Mater. 16(1), 37–48 (2007). [CrossRef]
  15. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett. 16(1), 15–17 (1991). [CrossRef] [PubMed]
  16. M. Shalaby, F. Reynaud, and A. Barthelemy, “Experimental observation of spatial soliton interactions with a π/2 relative phase difference,” Opt. Lett. 17(11), 778–780 (1992). [CrossRef] [PubMed]
  17. J. U. Kang, G. I. Stegeman, and J. S. Aitchison, “One-dimensional spatial soliton dragging, trapping, and all-optical switching in AlGaAs waveguides,” Opt. Lett. 21(3), 189–191 (1996). [CrossRef] [PubMed]
  18. V. Tikhonenko, J. Christou, and B. Luther-Davies, “Three dimensional bright spatial soliton collision and fusion in a saturable Nonlinear Medium,” Phys. Rev. Lett. 76(15), 2698–2701 (1996). [CrossRef] [PubMed]
  19. G. Leo, G. Assanto, and W. E. Torruellas, “Intensity-controlled interactions between vectorial spatial solitary waves in quadratic nonlinear media,” Opt. Lett. 22(1), 7–9 (1997). [CrossRef] [PubMed]
  20. B. Costantini, C. De Angelis, A. Barthelemy, A. Laureti Palma, and G. Assanto, “Polarization multiplexed χ(2) solitary waves interactions,” Opt. Lett. 22(18), 1376–1378 (1997). [CrossRef]
  21. Y. Baek, R. Schiek, G. I. Stegeman, I. Baumann, and W. Sohler, “Interactions between one-dimensional quadratic solitons,” Opt. Lett. 22(20), 1550–1552 (1997). [CrossRef]
  22. M. Peccianti, K. A. Brzdkiewicz, and G. Assanto, “Nonlocal spatial soliton interactions in nematic liquid crystals,” Opt. Lett. 27(16), 1460–1462 (2002). [CrossRef]
  23. C. Rotschild, B. Alfassi, O. Cohen, and M. Segev, “Long range interactions between spatial solitons,” Nat. Phys. 2(11), 769–774 (2006). [CrossRef]
  24. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004). [CrossRef] [PubMed]
  25. E. A. Ultanir, G. I. Stegeman, C. H. Lange, and F. Lederer, “Coherent interactions of dissipative spatial solitons,” Opt. Lett. 29(3), 283–285 (2004). [CrossRef] [PubMed]
  26. T.-S. Ku, M.-F. Shih, A. A. Sukhorukov, and Y. S. Kivshar, “Coherence controlled soliton interactions,” Phys. Rev. Lett. 94(6), 063904 (2005). [CrossRef] [PubMed]
  27. A. Fratalocchi, A. Piccardi, M. Peccianti, and G. Assanto, “Nonlinearly controlled angular momentum of soliton clusters,” Opt. Lett. 32(11), 1447–1449 (2007). [CrossRef] [PubMed]
  28. J. Gonzalo, H. Fernandez, J. Solis, D. Munoz-Martin, J. M. Fernandez-Navarro, C. N. Afonso, and J. L. G. Fierro, “Enhanced nonlinear optical properties of oxygen deficient lead-niobium-germanate film glasses,” Appl. Phys. Lett. 90(25), 251907 (2007). [CrossRef]
  29. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]
  30. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, and J. Solis, “Transverse nonlinear optics in heavy metal oxide glass,” Phys. Rev. A 77(4), 043808 (2008). [CrossRef]
  31. E. V. Vanin, A. I. Korytin, A. M. Sergeev, D. Anderson, M. Lisak, and L. Vázquez, “Dissipative optical solitons,” Phys. Rev. A 49(4), 2806–2811 (1994). [CrossRef] [PubMed]
  32. N. Akhmediev, and A. Ankiewicz, Dissipative Solitons (Springer, New York, 2005).
  33. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25(5), 335–337 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited