OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 22 — Oct. 26, 2009
  • pp: 19969–19980
« Show journal navigation

Near-field optical microscopy with a nanodiamond-based single-photon tip

Aurélien Cuche, Aurélien Drezet, Yannick Sonnefraud, Orestis Faklaris, François Treussart, Jean-François Roch, and Serge Huant  »View Author Affiliations


Optics Express, Vol. 17, Issue 22, pp. 19969-19980 (2009)
http://dx.doi.org/10.1364/OE.17.019969


View Full Text Article

Acrobat PDF (359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.

© 2009 Optical Society of America

1. Introduction

An ideal source of light for various rapidly developing fields such as quantum-optics [1

1. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]

, 2

2. S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008). [CrossRef] [PubMed]

], optomechanics [3

3. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]

, 4

4. A. Cleland, “Optomechanics: Photons refrigerating phonons,” Nature Phys. 5, 458–460 (2009). [CrossRef]

] and plasmonics [5

5. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009). [CrossRef] [PubMed]

, 6

6. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009). [CrossRef] [PubMed]

, 7

7. R. Koselov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nature Phys. 5, 470–474 (2009). [CrossRef]

] would consist of a single quantum emitter with extreme photostability at room-temperature (RT) and adjustable position with nanometer accuracy in all three dimensions. In this respect, active tips made of a single fluorescent object attached to an optical tip are very promising since they can benefit from progresses made in tip manufacturing and nanopositioning systems for scanning-probe microscopy, e.g. near-field scanning optical microscopy (NSOM). Here, we introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching at all). This is obtained by grafting within an all-optical process a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a stable RT near-field scanning single-photon microscopy. This microscopy opens up new possibilities for some emerging branches of nanoscience where an accurate positioning of a quantum emitter - or detector- is required such as for example quantum plasmonics [5

5. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009). [CrossRef] [PubMed]

, 6

6. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009). [CrossRef] [PubMed]

, 7

7. R. Koselov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nature Phys. 5, 470–474 (2009). [CrossRef]

] and high-resolution high-sensitivity magnetometry [8

8. C. L. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008). [CrossRef]

, 9

9. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008). [CrossRef] [PubMed]

, 10

10. G. Balasubramanian, I. Y. Chan, R. Koselov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Felezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008). [CrossRef] [PubMed]

].

Manufacturing a point-like scanning single-photon source faces a doubly challenging issue: a suitable quantum emitter must be identified and then attached onto the tip. In principle, single molecules with their point-like transition dipole moment [11

11. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670–1676 (1999). [CrossRef] [PubMed]

, 12

12. J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000). [CrossRef] [PubMed]

] are ideally suited but in practice they are limited to low-temperature operation and eventually suffer from photobleaching. Colloidal semiconductor nanocrystals work in ambient conditions and are single-photon emitters [13

13. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef] [PubMed]

]. However, despite promising progress in photostability [14

14. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nature Mat. 7, 659–664 (2008). [CrossRef]

], they still undergo intermittency of their emission [15

15. K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo, and M. G. Bawendi, “Blinking statistics in single semiconductor nanocrystal quantum dots,” Phys. Rev. B 63, 205316 (2001). [CrossRef]

] (i.e. blinking) which can be sensitive at the single object level [16

16. N. Chevalier, M. J. Nasse, J. C. Woehl, P. Reiss, J. Bleuse, F. Chandezon, and S. Huant, “CdSe single-nanoparticle based active tips for near-field optical microscopy,” Nanotechnology 16, 613–618 (2005). [CrossRef]

] (a notable exception are CdZnSe/ZnSe nanocrystals [17

17. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Majeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009). [CrossRef] [PubMed]

]reported very recently) and can possibly bleach as well [17

17. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Majeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009). [CrossRef] [PubMed]

, 18

18. Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier, “Near-field optical imaging with a CdSe single nanocrystal-based active tip,” Opt. Express 14, 10596–10602 (2006). [CrossRef] [PubMed]

]. Interestingly, epitaxial quantum dots are very photostable but, despite the steady increase in their working temperature [19

19. A. Tribu, G. Sallen, T. Aichele, R. Andr, J.-P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, “A hightemperature single-photon source from nanowire quantum dots,” Nano Lett. 8, 4326–4329 (2008). [CrossRef]

], they still do not work at RT and are very difficult to manipulate in 3D. Rare-earth doped oxide nanoparticles of sizes in the sub-10 nm range are extremely photostable RT emitters [20

20. D. Giaume, M. Poggi, D. Casanova, G. Mialon, K. Lahlil, A. Alexandrou, T. Gacoin, and J.-P. Boilot, “Organic functionalization of luminescent oxide nanoparticles toward their application as biological probes,” Langmuir 24, 11018–11026 (2008). [CrossRef] [PubMed]

, 21

21. A. Cuche, B. Masenelli, G. Ledoux, D. Amans, C. Dujardin, Y. Sonnefraud, P. Melinon, and S. Huant, “Fluorescent oxide nanoparticles adapted to active tips for near-field optics,” Nanotechnology 20, 015603 (2009). [CrossRef] [PubMed]

] but, in spite of their small size, their fluorescence originates from a large ensemble of doping ions, so that single-photon emission remains elusive so far.

Color-centers in diamond [22

22. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997). [CrossRef]

], in particular nitrogen-vacancy (NV) centers, appear to reconcile all of the above criteria since they are RT single-photon emitters [23

23. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802 (2001). [CrossRef]

, 24

24. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002). [CrossRef]

], their photostability is well-established [23

23. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802 (2001). [CrossRef]

] (no blinking, no bleaching) and they are hosted by nanocrystals with steadily decreasing sizes thanks to progresses in materials processing [25

25. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, T.-K. Tzeng, C.-Y. Fang, C.-C. Han, H. C. Chang, and W. Fan, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nature Nanotechnol. 3, 284–288 (2008). [CrossRef]

, 26

26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

, 27

27. J.-P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, and E. Gaffet, “High yield fabrication of fluorescent nanodiamonds,” Nanotechnology 20, 235602 (2009). [CrossRef] [PubMed]

, 28

28. B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Osawa, and T. Plakhotnik, “Five-nanometer diamond with luminescent nitrogen-vacancy defect centers,” Small 5, 1649–1653 (2009). [CrossRef] [PubMed]

]. Early use of NV-center doped diamond nanocrystals in NSOM active tips [29

29. S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6(2001). [CrossRef] [PubMed]

] was, however, limited by the size of the hosting crystal which was beyond the 50 nm range, so that the promise of single NV-occupancy, i.e. single-photon emission, was counterbalanced by size excess that prevents positioning with nanometer accuracy (see also refs. [30

30. T. Van der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009). [CrossRef]

, 31

31. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express 17, 11287–11293 (2009). [CrossRef] [PubMed]

]). The recent spectacular reduction in size [25

25. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, T.-K. Tzeng, C.-Y. Fang, C.-C. Han, H. C. Chang, and W. Fan, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nature Nanotechnol. 3, 284–288 (2008). [CrossRef]

, 26

26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

, 27

27. J.-P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, and E. Gaffet, “High yield fabrication of fluorescent nanodiamonds,” Nanotechnology 20, 235602 (2009). [CrossRef] [PubMed]

, 28

28. B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Osawa, and T. Plakhotnik, “Five-nanometer diamond with luminescent nitrogen-vacancy defect centers,” Small 5, 1649–1653 (2009). [CrossRef] [PubMed]

] of fluorescent nanodiamonds (NDs), down to approximately 5 nm in the latest reports [28

28. B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Osawa, and T. Plakhotnik, “Five-nanometer diamond with luminescent nitrogen-vacancy defect centers,” Small 5, 1649–1653 (2009). [CrossRef] [PubMed]

], suggests that such limitation no longer exists and that active optical tips made of an ultra-small (well below 50 nm in size) ND with single NV-occupancy should be possible to achieve.

In this article, we describe a simple and thoughtfully easy-to-reproduce method for developing ND-based scanning single-photon sources and, in a proof-of-principle experiment, we validate such sources in NSOM imaging, thereby realizing what turns out to be the first scanning single-photon microscopy working at room temperature on a long term. We anticipate many interesting applications to this new optical microscopy.

2. Principle and results

Fig. 1. Scheme of the optical setup used for tip functionalization with a single fluorescent nanodiamond (ND); (O=microscope objective, DM=dichroic mirror, F=optical filters, BMS=beamsplitter, APD=avalanche photodiode in the single-photon counting mode). The optical excitation is launched from the polymer-coated optical tip and the NV-center fluorescence is collected by a high NA objective, filtered, and injected into a multimode optical fiber. The latter can be connected either to an avalanche photodiode (channel A), a spectrometer (channel B), or a HBT correlator (channel C). This figure also depicts the protocol used for grafting a single ND at the tip apex: as soon as the position of the selected ND is reached during lateral scanning and concomitant monitoring of the fluorescence signal through channel A, the tip is temporarily approached vertically to the surface and lifted back to its original height (the dashed line is a scheme of the tip trajectory). Subsequent optical analysis checks that the trapped ND hosts a single NV center (photon correlation, channel C) and determines its charge state (fluorescence spectrum, channel B).

We now describe the all-optical modus operandi that we have engineered to trap in a controlled way a well-selected single ND at the optical tip apex. The uncoated optical tip (see Appendix A) is covered with a thin layer of poly-l-lysine (molecular weight: 30000–70000 u), a polymer which has the property of homogenously covering the tip, including the apex (radius of curvature below 30 nm), as checked by scanning-electron microscopy. In addition, poly-l-lysine is positively charged. This facilitates electrostatic attraction of the NDs which bear negatively charged carboxylic groups on their surface due to the acid treatment. This polymer-covered tip is glued on one prong of a tuning-fork [33

33. K. Karrai and R.D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995). [CrossRef]

] for shear-force feedback and mounted in the NSOM microscope.

The first step of our procedure is to image the sample fluorescence to the far-field by scanning the surface under the optical tip with a very large tip-sample distance of 3 µm. This allows for selecting an interesting area with isolated NDs. In a second step, the tip is brought into the surface near-field by using shear-force regulation. A near-field fluorescence image together with a shear-force topography image are simultaneously recorded at a rather large tip-sample distance of about 50 nm (usual cruise altitudes for NSOM imaging are between 20 and 30 nm) in order to identify an isolated ND with small size (Fig. 2(a)) and a fluorescence level (Fig. 2(b)) among the lowest-intensity spots detected in the entire scanned area. This last point is taken as a hint that this very ND presumably hosts a single color-center. Although our setup is able to check this essential point in situ by photon-correlation counting [26

26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

], we found it more convenient to control the single NV-occupancy after grafting of the ND.

Fig. 2. (a) Numerically flattened topographic and (b) fluorescence NSOM images acquired simultaneously (kcps=kilo-counts per second). Images are recorded pixel by pixel by scanning the sample under the tip from left to right and top to bottom (laser power at the uncoated tip apex: 120 µW; integration time: 80 ms; scanner speed: 1 µm s-1; image sizes: 64×64 pixel2). The line cut (horizontal solid line on the topography) gives the nanodiamond size (insert) at 20 nm in the present case. The arrow in (b) marks the tip position where the nanodiamond has been embarked by the scanning tip. (c) Normalized second-order time-intensity correlation function g (2)(t) for the functionalized tip giving evidence for single NV-center occupancy in the functionalizing ND. The red curve is an exponential fit (see Appendix B). (d) Photoluminescence spectrum of a functionalized tip (integration time: 180 s). The small peak at 575 nm (indicated by a black arrow) is the zero-phonon line of the neutral NV center.

Fig. 3. (a) Scanning-electron micrograph of chromium structures patterned on a fused silica cover slip. (b) Numerically flattened topography of the same region. (c) Fluorescence NSOM image acquired simultanously with the scanning single-photon tip of Fig. 2 (optical power at 488 nm at the uncoated tip apex: 120 µW, integration time: 100 ms, scan height: h≤30 nm, scanner speed: 1 µm s-1, image size: 64×64 pixel2). Here, the collected light is restricted by optical filtering to the emission band of the single NV center grafted on the optical tip. (d) Cross-cut of the optical intensity along the direction indicated by a white line in (c).

Now, the functionalized tip needs further optical characterization since the embarked ND was elected from guesses that it should host a single color-center. To check this important point, we carried out photon-correlation measurements and spectrum acquisition of the functionalized tip after having moved the tip far above the surface (distance of 10 µm), laterally displaced the sample to a ND-free region, and focused the collection objective onto the probe apex. Figure 2(c) shows the second-order time-intensity correlation function g (2)(t) (see Appendix B) for the functionalized tip obtained after subtracting the random coincidences caused by the background light [26

26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

, 34

34. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000). [CrossRef]

]. The correlation function exhibits an anti-bunching gap at zero delay with g (2)(0) going far below 0.5 (i.e. g (2)(0)≅0.1). This unambiguously confirms that a single NV color-center, acting as a single photon nano-source [24

24. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002). [CrossRef]

], has been attached at the tip apex. This NV center is an uncharged one as additionally revealed by the optical spectrum of Fig. 2(d) which exhibits the characteristic zero-phonon line of the neutral NV center at 575 nm [32

32. Y. Dumeige, F. Treussart, R. Allaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004). [CrossRef]

].

An interesting feature of the scanning single-photon near-field source is the spatial resolution that it can potentially offer. The chromium parabola in Fig. 3 has been patterned in such a way as to offer a variable gap with the adjacent line. Our aim was at inferring a spatial resolution for our setup from its ability of resolving two adjacent similar objects, in agreement with the basic definition of a resolving power, rather than from the lateral extension of the rise in the optical signal. In addition, for this particular line-parabola doublet shown in Fig. 3, a lithography failure brought incidentally the minimum gap to approximately 120 nm (Fig. 3(a)). As seen in Fig. 3(c), this 120 nm gap is resolved in the optical image. Furthermore, the cross-cut of the optical intensity profile done along the gap direction (see white line in Fig. 3c) confirms this finding. This indicates that the spatial resolution is at least in the range 70–150 nm, i.e, much better than with the initial uncoated tip which offers resolutions limited to about 400 nm [26

26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

].

Moreover, the near-field optical probe reported here acts as a genuine scanning point-like dipole emitter. This is in contrast with metal-coated aperture tips which bear a polarization-dependent annular charge density around the apex [38

38. A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

]. As a consequence, such aperture tips exhibit a double-lobe distribution of the electromagnetic field at the apex that artificially duplicates the imaged objects so that the resolution they offer is ultimately limited by the free aperture diameter (50–100 nm) at the tip apex [38

38. A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

, 39

39. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]

, 40

40. J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig, “Near-field spectroscopy of single molecules at room temperature,” Nature 369, 40–42 (1994). [CrossRef]

, 41

41. N. F. van Hulst, J.-A. Veerman, M. F. Garcia-Parajo, and L. Kuipers, “Analysis of individual (macro)molecules and proteins using near-field optics,” J. Chem. Phys. 112, 7799–7810 (2000). [CrossRef]

, 42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

], not by the scanning height (see Appendix C). Point-like dipolar emitters do not exhibit such a split-field distribution, so that their potential resolution should thus ultimately depend on the scanning height h only [12

12. J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000). [CrossRef] [PubMed]

].

Interestingly, the ND-based active tip introduced here could fully exploit this potentiality because the NV quantum emitter is hosted by a matrix of a genuine nanometer extension. This stresses the key role played by height control in future developments (note that the most relevant distance is the separation between the NV center and the imaged surface). In the present proof-of-principle experiments, we have set a safe lower bound to tip-surface distance at approximately 20–30 nm to avoid too strong friction forces (in excess of 1 nN) to be applied to the tip apex [33

33. K. Karrai and R.D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995). [CrossRef]

], thereby preventing a too rapid release of the 20-nm sized illuminating ND. We were then able to use our functionalized tips for several days for image acquisition or other measurements.

The potential of our scanning single-photon point-like source goes well beyond high-resolution optical imaging. Indeed, an important point to emphasize is that the optical image of Fig. 3(c) is acquired with a single-photon source used for illumination so that only one photon is interacting with the nanostructure at any time, even in the continuous-wave regime of the laser illumination [43

43. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995).

] (see Appendix D). This in turn means that the imaging procedure reported here can be viewed as a scanning single-photon near-field microscopy working at RT (note, however, that the nanodiamond emits an average of 107 photons per pixel due to the integration time of 100 ms). It can be anticipated that such a microscopy will offer interesting new prospects to quantum optics at the nano- and micrometer scales. First, it would be possible to study in a local and controllable way the influence of the optical environment on the emission properties of a quantum system, i.e., the NV center. In particular, the complex influence of the environment on the optical local density-of-states [36

36. C. Girard, O. J. F. Martin, G. Leveque, G. Colas, A. des Francs, and Dereux, “Generalized bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005). [CrossRef]

, 44

44. G. Colas des Francs, C. Girard, J.-C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001). [CrossRef] [PubMed]

] (optical LDOS) could be analyzed. Other perspectives concern the strong coupling regime and the interaction between NV centers and a second quantum emitter (e.g. a colloidal quantum dot [17

17. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Majeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009). [CrossRef] [PubMed]

]) through fluorescence resonance energy transfer (FRET). Such possibilities are specific of our scanning single photon source and could not be envisaged with usual aperture NSOM probes (even coupled to an external single photon source) due to the double-lobe distribution of the optical near-field generated by the aperture [38

38. A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

, 39

39. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]

, 40

40. J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig, “Near-field spectroscopy of single molecules at room temperature,” Nature 369, 40–42 (1994). [CrossRef]

, 41

41. N. F. van Hulst, J.-A. Veerman, M. F. Garcia-Parajo, and L. Kuipers, “Analysis of individual (macro)molecules and proteins using near-field optics,” J. Chem. Phys. 112, 7799–7810 (2000). [CrossRef]

, 42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

].

3. Conclusion

4. Appendix A: Near-field probe fabrication

The tapered fiber tips are prepared using the tube-etching method [49

49. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]

] which works as follows: First, the pure-silica core single mode optical fiber (fiber S405, Thorlabs) with its plastic cladding is dipped into a HF solution bath. The chemical etching of silica, which lasts for several 10 minutes, is assisted by HF convection in the region separating the plastic cladding from the silica part. The residual plastic cladding is finally removed using acetone. The result is a conical fiber probe with a full apex angle α≅16°. The final curvature radius of the fiber tip apex is typically 30 nm.

In order to graft a diamond nanocrystal (functionalized with COOH carboxylic groups) on the fiber probe we dip the tip into a positively charged poly-l-lysine solution (molecular weight 30000–70000 u) for ten minutes. The tip is then retracted from the bath at the velocity 100 µ/s. This polymer is thus used in situ during the NSOM experiment to fix a nanodiamond as explained in section 2.

5. Appendix B: Second-order correlation function [Figure 2c]

The color center considered in the article is an electrically uncharged Nitrogen Vacancy (NV) defect in diamond (i.e. NV0). For the present purpose, the energy level structure of NV0 is well described by a two-level system [|e〉,|g〉] completed by a metastable state |m〉 [23

23. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802 (2001). [CrossRef]

, 24

24. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002). [CrossRef]

, 34

34. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000). [CrossRef]

]. Optical transitions occur between the ground |g〉 and the excited |e〉 states and |m〉 plays the role of an optical dark state with very low probability kmg to relax to |g〉. In the following we will however ignore the dark state and we will treat the system as an ideal two-level oscillator. Neglecting quantum coherence [50

50. E. Joos, H. D. Zeeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a classical World in Quantum Theory, 2nd ed. (Springer, New York, 2003).

] (this is justified since at room temperature non radiative transitions between energy vibration sublevels break the quantum coherence) between the different energy levels the dynamics of the NV color center can be solved using the rate equations:

ddτ(pepg)=(kegkgekegkge)·(σeσg),
(1)

where pi are the population of the i level (pe+pg=1) and kij the transition rates [51

51. R. Loudon, The quantum theory of light (Oxford University Press, New York, 2000).

]. The initial conditions, corresponding to the system in its ground state at time τ=0, are written pe=0, pg=1 and lead, after solving the differential equation 1, to the second order correlation function [51

51. R. Loudon, The quantum theory of light (Oxford University Press, New York, 2000).

]:

g(2)(τ)=pe(τ)pe(+)=1e(keg+kge)τ.
(2)

At t=0 equation 2 fulfills the condition g (2)(0)=0, i.e. non classical antibunching, which characterizes the one by one single photon emission process.

Importantly, due to the presence of random coincidences caused by the background light, the second order coincidence function CN(τ)=N(t)N(t+τ)(N(t))2 (N is the single particle rate in count per seconds (cps)), deduced from the photon counts recorded with the Hanbury Brown and Twiss correlator, see Figure 1, contains an additional contribution to g (2)(τ). We remind that the normalized correlation CN(τ) is connected to the histogramm of coincidences c(t) given by the correlator by : CN(τ)=c(t)/(〈N 1〉〈N 2WT) where 〈N 1〉≅〈N 2〉=9 kcps is the single photon detection rate on the APDs 1 and 2, W=512 ps the time bin of the coincidence histogramm, and T=1000 s the total integration time. We thus have the total correlation function

CN(τ)=g(2)(τ)·ρ2+1ρ2,
(3)

where ρ=〈S〉/〈(S+B)〉 is the signal to signal plus noise ratio [23

23. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802 (2001). [CrossRef]

, 24

24. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002). [CrossRef]

, 34

34. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000). [CrossRef]

, 35

35. A. Cuche, Y. Sonnefraud, O. Faklaris, D. Garrot, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics,” J. Lumin., doi: 10.1016/j.jlumin.2009.04.089 (2009).

] (assuming a Poisson statistics for the noise). In order to renormalize the correlation function one must thus know the value of ρ. In our experiment the noise due to the substrate and optical fiber fluorescence can be determined before attaching the nanodiamond onto the tip apex. This experimentally leads to a value ρ 1≃0.8 and thus to a corrected CN˜(τ):

CN˜(τ)=CN(τ)(1ρ12)ρ12,
(4)

This should, ideally, equal the signal correlation function g (2)(τ) given by equation 2 if ρ 1=ρ. However, because the nanodiamond crystal itself fluoresces we have ρ 1>ρ and we obtain a small disagreement between CN˜(τ) and g (2)(τ) given by :

CN˜(τ)=g(2)(τ)ρ2ρ12+1ρ2ρ12.
(5)

In particular we have CN˜(0)0 which explains the residual correlation observed at τ=0 shown in Fig. 2.

6. Appendix C: Optical resolution in near field microscopy

Fig. 4. (a) Simulation of the optical image obtained by scanning a fluorescent isotropical emitter at a constant height h=20 nm below the NSOM tip. The red curve is the theoretical result obtained with a dipolar point like source (like the NV center). It is compared with the image obtained with an usual aperture NSOM, hole radius: 50 nm, (blue curve). (b) same as (a) but for h=10 nm. The incident light polarization direction and the polarization dipole orientation of the active probe are both aligned with the scan direction.

The optical resolution of aperture near-field optical microscopy is intrinsically limited by the geometrical diameter of the hole located at the apex of the probe. To simulate the optical field generated by such NSOM tips we here use the method developed in refs. [38

38. A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

, 42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

]. More precisely, we assume that the electric near-field in the vicinity of the aperture is equivalent to the one created by a linear distribution of charge located along the aperture rim with an azimuthal dependence

σ(ϕ)=σ0·cos(ϕ),
(6)

where ϕ is the azimuthal angle in the aperture plane relatively to the linear polarization of the incident light [38

38. A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

, 42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

]. In order to mimic what happens during a typical scan of a sample below the NSOM tip we calculate the field generated by the charge distribution given by Eq. 6 on a fluorescent emitter located in front of the tip at a constant height h. We show in Fig. 4 the power radiated during the scan by such an emitter that we suppose isotropical for simplicity (such assumption is justified if one uses for example a fluorescent latex nanosphere as typical emitter [42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

]). The two-lobe signal is a direct signature of the ring-like charge distribution as confirmed by earlier experiments [42

42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

]. We compare this result with the prediction given, in the same conditions, by a simple point-like dipole which mimics the optical behavior of our NV-center based probe (see Fig. 4). The differences are very significant due to the complexity of the optical near-field generated by the aperture NSOM compared to a single-dipole electric field. For this reason, the spatial resolution of our single photon near-field microscopy is ultimately only limited by the height h as can be seen by comparing Fig. 4 (a) and (b). This is clearly not the case with an aperture NSOM tip.

7. Appendix D : Single photon near-field microscopy

The typical time between two successive photon emissions is given by the excited-state lifetime τ. During this lifetime a photon propagates over a maximum distance of =3-6 m (c=light celerity) which is by orders of magnitude larger than any scale of the scanned image. Going back to the correlation function in Figure 2c, it is thus clear that at the time T=L/c, where L is a characteristic propagation length of the photon in the imaged structure (in the nanometer or micrometer range) g (2)(T) is practically equal to zero. Since g (2)(T) represents the conditional probability to detect a second photon at time t+T provided that a first one has already been recorded at time t, normalized to the single photon detection probability at time t [51

51. R. Loudon, The quantum theory of light (Oxford University Press, New York, 2000).

], the small value of g (2)(T) confirms that only one photon at once interacts with the structure.

Acknowledgments

We are grateful to Jean-François Motte for his help in the optical tip manufacturing and to Jean-Paul Boudou and Thierry Sauvage for the nanodiamond sample preparation. Helpful discussions with Gérald Dujardin and Christian Girard as well as a critical reading of the manuscript by Hermann Sellier are gratefully acknowledged. The PhD grant of AC by the Région Rhône-Alpes (‘Cluster MicroNano’) is gratefully acknowledged. This work was supported by the European Commission through the EQUIND and NEDQIT projects and by Agence Nationale de la Recherche, France, through the NADIA, PROSPIQ, and NAPHO projects.

References and links

1.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef] [PubMed]

2.

S. Schietinger, T. Schröder, and O. Benson, “One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator,” Nano Lett. 8, 3911–3915 (2008). [CrossRef] [PubMed]

3.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]

4.

A. Cleland, “Optomechanics: Photons refrigerating phonons,” Nature Phys. 5, 458–460 (2009). [CrossRef]

5.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009). [CrossRef] [PubMed]

6.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009). [CrossRef] [PubMed]

7.

R. Koselov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave-particle duality of single surface plasmon polaritons,” Nature Phys. 5, 470–474 (2009). [CrossRef]

8.

C. L. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008). [CrossRef]

9.

J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008). [CrossRef] [PubMed]

10.

G. Balasubramanian, I. Y. Chan, R. Koselov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Felezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008). [CrossRef] [PubMed]

11.

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670–1676 (1999). [CrossRef] [PubMed]

12.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000). [CrossRef] [PubMed]

13.

P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000). [CrossRef] [PubMed]

14.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nature Mat. 7, 659–664 (2008). [CrossRef]

15.

K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo, and M. G. Bawendi, “Blinking statistics in single semiconductor nanocrystal quantum dots,” Phys. Rev. B 63, 205316 (2001). [CrossRef]

16.

N. Chevalier, M. J. Nasse, J. C. Woehl, P. Reiss, J. Bleuse, F. Chandezon, and S. Huant, “CdSe single-nanoparticle based active tips for near-field optical microscopy,” Nanotechnology 16, 613–618 (2005). [CrossRef]

17.

X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Majeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature 459, 686–689 (2009). [CrossRef] [PubMed]

18.

Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier, “Near-field optical imaging with a CdSe single nanocrystal-based active tip,” Opt. Express 14, 10596–10602 (2006). [CrossRef] [PubMed]

19.

A. Tribu, G. Sallen, T. Aichele, R. Andr, J.-P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, “A hightemperature single-photon source from nanowire quantum dots,” Nano Lett. 8, 4326–4329 (2008). [CrossRef]

20.

D. Giaume, M. Poggi, D. Casanova, G. Mialon, K. Lahlil, A. Alexandrou, T. Gacoin, and J.-P. Boilot, “Organic functionalization of luminescent oxide nanoparticles toward their application as biological probes,” Langmuir 24, 11018–11026 (2008). [CrossRef] [PubMed]

21.

A. Cuche, B. Masenelli, G. Ledoux, D. Amans, C. Dujardin, Y. Sonnefraud, P. Melinon, and S. Huant, “Fluorescent oxide nanoparticles adapted to active tips for near-field optics,” Nanotechnology 20, 015603 (2009). [CrossRef] [PubMed]

22.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997). [CrossRef]

23.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061802 (2001). [CrossRef]

24.

A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18, 191–196 (2002). [CrossRef]

25.

Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, T.-K. Tzeng, C.-Y. Fang, C.-C. Han, H. C. Chang, and W. Fan, “Mass production and dynamic imaging of fluorescent nanodiamonds,” Nature Nanotechnol. 3, 284–288 (2008). [CrossRef]

26.

Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy,” Opt. Lett. 33, 611–613 (2008). [CrossRef] [PubMed]

27.

J.-P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, and E. Gaffet, “High yield fabrication of fluorescent nanodiamonds,” Nanotechnology 20, 235602 (2009). [CrossRef] [PubMed]

28.

B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Osawa, and T. Plakhotnik, “Five-nanometer diamond with luminescent nitrogen-vacancy defect centers,” Small 5, 1649–1653 (2009). [CrossRef] [PubMed]

29.

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6(2001). [CrossRef] [PubMed]

30.

T. Van der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009). [CrossRef]

31.

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. Hollenberg, and S. Prawer, “Nano-manipulation of diamond-based single photon sources,” Opt. Express 17, 11287–11293 (2009). [CrossRef] [PubMed]

32.

Y. Dumeige, F. Treussart, R. Allaume, T. Gacoin, J.-F. Roch, and P. Grangier, “Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination,” J. Lumin. 109, 61–67 (2004). [CrossRef]

33.

K. Karrai and R.D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995). [CrossRef]

34.

R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294–1296 (2000). [CrossRef]

35.

A. Cuche, Y. Sonnefraud, O. Faklaris, D. Garrot, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, “Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics,” J. Lumin., doi: 10.1016/j.jlumin.2009.04.089 (2009).

36.

C. Girard, O. J. F. Martin, G. Leveque, G. Colas, A. des Francs, and Dereux, “Generalized bloch equations for optical interactions in confined geometries,” Chem. Phys. Lett. 404, 44–48 (2005). [CrossRef]

37.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997). [CrossRef]

38.

A. Drezet, S. Huant, and J. C. Woehl, “In situ characterization of optical tips using fluorescent nanobeads,” J. Lumin. 107, 176–181 (2004). [CrossRef]

39.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]

40.

J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig, “Near-field spectroscopy of single molecules at room temperature,” Nature 369, 40–42 (1994). [CrossRef]

41.

N. F. van Hulst, J.-A. Veerman, M. F. Garcia-Parajo, and L. Kuipers, “Analysis of individual (macro)molecules and proteins using near-field optics,” J. Chem. Phys. 112, 7799–7810 (2000). [CrossRef]

42.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004). [CrossRef]

43.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995).

44.

G. Colas des Francs, C. Girard, J.-C. Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001). [CrossRef] [PubMed]

45.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). [CrossRef] [PubMed]

46.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup“Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009). [CrossRef] [PubMed]

47.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nature Photon. 2, 234–237 (2008). [CrossRef]

48.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, “Remote optical addressing of single nano-object,” Europhys. Lett. 64, 634–640 (2003). [CrossRef]

49.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999). [CrossRef]

50.

E. Joos, H. D. Zeeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a classical World in Quantum Theory, 2nd ed. (Springer, New York, 2003).

51.

R. Loudon, The quantum theory of light (Oxford University Press, New York, 2000).

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(160.4236) Materials : Nanomaterials
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Microscopy

History
Original Manuscript: September 3, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: September 28, 2009
Published: October 19, 2009

Citation
Aurélien Cuche, Aurélien Drezet, Yannick Sonnefraud, Orestis Faklaris, François Treussart, Jean-François Roch, and Serge Huant, "Near-field optical microscopy with a nanodiamond-based single-photon tip," Opt. Express 17, 19969-19980 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-S. Park, A. K. Cook, and H. Wang, "Cavity QED with diamond nanocrystals and silica microspheres," Nano Lett. 6, 2075-2079 (2006). [CrossRef] [PubMed]
  2. S. Schietinger, T. Schröder, and O. Benson, "One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator," Nano Lett. 8, 3911-3915 (2008). [CrossRef] [PubMed]
  3. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane," Nature 452, 72-75 (2008). [CrossRef] [PubMed]
  4. A. Cleland, "Optomechanics: Photons refrigerating phonons," Nature Phys. 5, 458-460 (2009). [CrossRef]
  5. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett. 9, 1663-1667 (2009). [CrossRef] [PubMed]
  6. S. Schietinger, M. Barth, T. Aichele, and O. Benson, "Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature," Nano Lett. 9, 1694-1698 (2009). [CrossRef] [PubMed]
  7. R. Koselov, B. Grotz, G. Balasubramanian, R. J. St¨ohr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, "Wave-particle duality of single surface plasmon polaritons," Nature Phys. 5, 470-474 (2009). [CrossRef]
  8. C. L. Degen, "Scanning magnetic field microscope with a diamond single-spin sensor," Appl. Phys. Lett. 92, 243111 (2008). [CrossRef]
  9. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, "Nanoscale magnetic sensing with an individual electronic spin in diamond," Nature 455, 644-647 (2008). [CrossRef] [PubMed]
  10. G. Balasubramanian, I. Y. Chan, R. Koselov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Felezko, and J. Wrachtrup, "Nanoscale imaging magnetometry with diamond spins under ambient conditions," Nature 455, 648-651 (2008). [CrossRef] [PubMed]
  11. W. E. Moerner and M. Orrit, "Illuminating single molecules in condensed matter," Science 283, 1670-1676 (1999). [CrossRef] [PubMed]
  12. J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, "Optical microscopy using a single-molecule light source," Nature 405, 325-328 (2000). [CrossRef] [PubMed]
  13. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968-970 (2000). [CrossRef] [PubMed]
  14. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, "Towards non-blinking colloidal quantum dots," Nature Mat. 7, 659-664 (2008). [CrossRef]
  15. K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles,W. K. Woo, and M. G. Bawendi, "Blinking statistics in single semiconductor nanocrystal quantum dots," Phys. Rev. B 63, 205316 (2001). [CrossRef]
  16. N. Chevalier,M. J. Nasse, J. C. Woehl, P. Reiss, J. Bleuse, F. Chandezon, and S. Huant, "CdSe single-nanoparticle based active tips for near-field optical microscopy," Nanotechnology 16, 613-618 (2005). [CrossRef]
  17. X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Majeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, "Non-blinking semiconductor nanocrystals," Nature 459, 686-689 (2009). [CrossRef] [PubMed]
  18. Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier, "Near-field optical imaging with a CdSe single nanocrystal-based active tip," Opt. Express 14, 10596-10602 (2006). [CrossRef] [PubMed]
  19. A. Tribu, G. Sallen, T. Aichele, R. Andr, J.-P. Poizat, C. Bougerol, S. Tatarenko, and K. Kheng, " A hightemperature single-photon source from nanowire quantum dots," Nano Lett. 8, 4326-4329 (2008). [CrossRef]
  20. D. Giaume, M. Poggi, D. Casanova, G. Mialon, K. Lahlil, A. Alexandrou, T. Gacoin, and J.-P. Boilot, "Organic functionalization of luminescent oxide nanoparticles toward their application as biological probes," Langmuir 24, 11018-11026 (2008). [CrossRef] [PubMed]
  21. A. Cuche, B. Masenelli, G. Ledoux, D. Amans, C. Dujardin, Y. Sonnefraud, P. Melinon, and S. Huant, " Fluorescent oxide nanoparticles adapted to active tips for near-field optics," Nanotechnology 20, 015603 (2009). [CrossRef] [PubMed]
  22. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczyskowski, "Scanning confocal optical microscopy and magnetic resonance on single defect centers," Science 276, 2012-2014 (1997). [CrossRef]
  23. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Nonclassical radiation from diamond nanocrystals," Phys. Rev. A 64, 061802 (2001). [CrossRef]
  24. A. Beveratos, S. K¨uhn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Room temperature stable singlephoton source," Eur. Phys. J. D 18, 191-196 (2002). [CrossRef]
  25. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, T.-K. Tzeng, C.-Y. Fang, C.-C. Han, H. C. Chang, and W. Fan, "Mass production and dynamic imaging of fluorescent nanodiamonds," Nature Nanotechnol. 3, 284-288 (2008). [CrossRef]
  26. Y. Sonnefraud, A. Cuche, O. Faklaris, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, "Diamond nanocrystals hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy," Opt. Lett. 33, 611-613 (2008). [CrossRef] [PubMed]
  27. J.-P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, and E. Gaffet, "High yield fabrication of fluorescent nanodiamonds," Nanotechnology 20, 235602 (2009). [CrossRef] [PubMed]
  28. B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Osawa, and T. Plakhotnik," Five-nanometer diamond with luminescent nitrogen-vacancy defect centers," Small 5, 1649-1653 (2009). [CrossRef] [PubMed]
  29. S. K¨uhn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, "Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy," J. Microsc. 202, 2-6 (2001). [CrossRef] [PubMed]
  30. T. Van der Sar, E. C. Heeres, G. M. Dmochowski, G. De Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, "Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center," Appl. Phys. Lett. 94, 173104 (2009). [CrossRef]
  31. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. Hollenberg, and S. Prawer, " Nano-manipulation of diamond-based single photon sources," Opt. Express 17, 11287-11293 (2009). [CrossRef] [PubMed]
  32. Y. Dumeige, F. Treussart, R. Allaume, T. Gacoin, J.-F. Roch, and P. Grangier, "Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination," J. Lumin. 109, 61-67 (2004). [CrossRef]
  33. K. Karrai and R.D. Grober, "Piezoelectric tip-sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995). [CrossRef]
  34. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett. 25, 1294-1296 (2000). [CrossRef]
  35. A. Cuche, Y. Sonnefraud, O. Faklaris, D. Garrot, J.-P. Boudou, T. Sauvage, J.-F. Roch, F. Treussart, and S. Huant, " Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics," J. Lumin., doi: 10.1016/j.jlumin.2009.04.089 (2009).
  36. C. Girard, O. J. F. Martin, G. Leveque, G. Colas des Francs, and A. Dereux, "Generalized bloch equations for optical interactions in confined geometries," Chem. Phys. Lett. 404, 44-48 (2005). [CrossRef]
  37. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, "Facts and artifacts in near-field optical microscopy," J. Appl. Phys. 81, 2492-2498 (1997). [CrossRef]
  38. A. Drezet, S. Huant, and J. C. Woehl, "In situ characterization of optical tips using fluorescent nanobeads," J. Lumin. 107, 176-181 (2004). [CrossRef]
  39. E. Betzig and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science 262, 1422-1425 (1993). [CrossRef] [PubMed]
  40. J. K. Trautman, J. J. Macklin, L. E. Brus, and E. Betzig," Near-field spectroscopy of single molecules at room temperature," Nature 369, 40-42 (1994). [CrossRef]
  41. N. F. van Hulst, J.-A. Veerman, M. F. Garcia-Parajo, and L. Kuipers," Analysis of individual (macro)molecules and proteins using near-field optics," J. Chem. Phys. 112, 7799-7810 (2000). [CrossRef]
  42. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, "The optical near-field of an aperture tip," Europhys. Lett. 66, 41-47 (2004). [CrossRef]
  43. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995).
  44. G. Colas des Francs, C. Girard, J.-C.Weeber, C. Chicane, T. David, A. Dereux, and D. Peyrade, "Optical analogy to electronic quantum corrals," Phys. Rev. Lett. 86, 4950-4953 (2001). [CrossRef] [PubMed]
  45. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, andW. E. Moerner, "Toward nanometerscale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006). [CrossRef] [PubMed]
  46. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. B¨orsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup " Fluorescence and spin properties of defects in single digit nanodiamonds," ACS Nano 3, 1959-1965 (2009). [CrossRef] [PubMed]
  47. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, "Optical antennas direct single-molecule emission," Nature Photon. 2, 234-237 (2008). [CrossRef]
  48. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant, "Remote optical addressing of single nano-object," Europhys. Lett. 64, 634-640 (2003). [CrossRef]
  49. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, "High-quality near-field optical probes by tube etching," Appl. Phys. Lett. 75, 160-162 (1999). [CrossRef]
  50. E. Joos, H. D. Zeeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence and the Appearance of a classical World in Quantum Theory, 2nd ed. (Springer, New York, 2003).
  51. R. Loudon, The quantum theory of light (Oxford University Press, New York, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited