## Measurement and Modeling of High-Linearity Modified Uni-Traveling Carrier Photodiode with Highly-Doped Absorber

Optics Express, Vol. 17, Issue 22, pp. 20221-20226 (2009)

http://dx.doi.org/10.1364/OE.17.020221

Acrobat PDF (197 KB)

### Abstract

The third-order intermodulation distortions of InGaAs/InP modified uni-traveling carrier photodiodes with a highly-doped p-type absorber are characterized. The third-order local intercept point is 55 dBm at low frequency (< 3 GHz) and remains as high as 47.5 dBm up to 20 GHz. The frequency characteristics of the OIP3 are well explained by an equivalent circuit model.

© 2009 OSA

## 1. Introduction

1. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector Nonlinearity on a High-Dynamic Range 3 GHz Fiber Optic Link,” J. Lightwave Technol. **16**(2), 192–199 (1998). [CrossRef]

3. K. Williams, R. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. **14**(1), 84–96 (1996). [CrossRef]

4. A. Joshi, S. Datta, and D. Becker, “GRIN Lens Coupled Top-Illuminated Highly Linear InGaAs Photodiodes,” IEEE Photon. Technol. Lett. **20**(17), 1500–1502 (2008). [CrossRef]

5. H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The Frequency Behavior of the Third-Order Intercept Point in a Waveguide photodiode,” IEEE Photon. Technol. Lett. **12**(5), 540–542 (2000). [CrossRef]

6. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-Power High-Linearity Uni-Traveling-Carrier photodiodes for Analog Photonic Links,” IEEE Photon. Technol. Lett. **20**(3), 202–204 (2008). [CrossRef]

7. T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in a unitravelingcarrier refracting-facet photodiode and a p–i–n refracting-facet photodiode,” IEEE Photon. Technol. Lett. **14**(3), 375–377 (2002). [CrossRef]

8. A. Beling, H. Pan, C. Hao, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photon. Technol. Lett. **20**(14), 1219–1221 (2008). [CrossRef]

9. A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. **44**(24), 1419–1420 (2008). [CrossRef]

8. A. Beling, H. Pan, C. Hao, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photon. Technol. Lett. **20**(14), 1219–1221 (2008). [CrossRef]

## 2. Device design and three-tone measurement

^{+}absorbing region and a 300 nm unintentionally-doped absorber layer. Previously p-type InGaAs absorbing layers doped with Zn exhibited strong diffusion of the Zn dopant, which results in a non-abrupt junction doping profile. This non-abrupt doping profile causes the junction capacitance of the photodiode to have a strong dependence on bias voltage, which has been shown to be responsible for the decrease of OIP3 with frequency [10

10. H. Pan, A. Beling, H. Chen, J. C. Campbell, and P. D. Yoder, “The Influence of Nonlinear Capacitance on the Linearity of a Modified Uni-Traveling Carrier Photodiode,” *2008 International Topical Meeting on Microwave Photonics*, (Institute of Electrical and Electronics Engineers, Gold Coast, Australia, 2008), pp. 82–85.

^{+}absorbing layer. The p-type doping level was graded in 10 steps from 8⋅10

^{19}to 5⋅10

^{18}cm

^{−3}so as to assist electron transport in the doped absorber. A 24 nm-thick InGaAs/InAlAs chirped superlattice and a 5 nm moderately n-type doped InP cliff layer were incorporated between the InGaAs and InP to reduce carrier pile up at the heterojunction interface. The 24 nm-thick InGaAs/InAlAs chirped superlattice is used to smooth the bandgap discontinuity between the InGaAs layer and the InP layer [11

11. Z. Griffith, Y. M. Kim, M. Dahlstrom, A.C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax>268 GHz,” IEEE Electron Device Lett. **25**, 675–677 (2004). [CrossRef]

12. H. Pan, A. Beling, H. Chen, and J. C. Campbell, “Characterization and Optimization of High-Power InGaAs/InP Photodiodes,” Opt. Quantum Electron. **40**(1), 41–46 (2008). [CrossRef]

^{15}cm

^{−3}. Back-illuminated mesa structures were fabricated by inductive coupled plasma reactive ion etching. Microwave contact pads and an air-bridge connection to the top p-contact layer were fabricated for high-speed measurements. Finally a 220 nm SiO

_{2}anti-reflection layer was deposited on the back of the wafer. The devices were mounted on an Al heat sink for testing. Photodiodes with an active diameter of 40 μm exhibited a 3 dB bandwidth of 13 GHz at −6 V and responsivity of 0.49 A/W at 1550 nm. Compared with the CC-MUTC photodiode reported in Ref. [8

8. A. Beling, H. Pan, C. Hao, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photon. Technol. Lett. **20**(14), 1219–1221 (2008). [CrossRef]

_{f}at the fundamental frequencies f

_{1}, f

_{2}and the power of IMD3, P

_{IMD3}, at (2*f

_{2}-f

_{1}) and (2*f

_{1}-f

_{2}) were measured; following the approach in Ref [1

1. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector Nonlinearity on a High-Dynamic Range 3 GHz Fiber Optic Link,” J. Lightwave Technol. **16**(2), 192–199 (1998). [CrossRef]

_{f}+ (P

_{f}– P

_{IMD3})/2 dBm. However, it has recently been suggested that the harmonics from the optical modulators may result in inaccuracies in the two-tone measurement results [13

13. M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express **16**(16), 12108–12113 (2008). [CrossRef] [PubMed]

14. A. Ramaswamy, J. Klamkin, N. Nunoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” *21st Annual Meeting of the IEEE Lasers and Electro-Optics Society*, (Institute of Electrical and Electronics Engineers, Newport Beach, California, 2008), pp. 286–7.

_{f}at the fundamental frequencies f

_{1}, f

_{2}, f

_{3}and P

_{IMD3}at (f

_{1}+f

_{2}-f

_{3}), (f

_{2}+f

_{3}-f

_{1}), (f

_{3}+f

_{1}-f

_{2}) were measured. The three-tone IMD3 is 6dB larger than the ideally measured two-tone IMD3. This difference in IMD3 can be understood from the fact that the coefficient of cos(ω

_{i}t+ω

_{j}t-ω

_{k}t) (i,j,k=1,2,3 i≠j≠k) is 2 times as large as that of cos(2ω

_{i}t-ω

_{j}t) (i,j=1,2,3 i≠j) after expanding the expression [cos(ω

_{i}t)+cos(ω

_{j}t)+cos(ω

_{k}t)]

^{3}(i,j,k=1,2,3 i≠j≠k). If the three-tone OIP3 is defined analogously to the two-tone OIP3, then, following the approach in Ref. [7

7. T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in a unitravelingcarrier refracting-facet photodiode and a p–i–n refracting-facet photodiode,” IEEE Photon. Technol. Lett. **14**(3), 375–377 (2002). [CrossRef]

## 3. Non-linear phenomena and equivalent circuit analysis

15. M. Dentan and B. de Cremoux, “Numerical Simulation of the Nonlinear Response of a p-i-n photodiode Under High Illumination,” J. Lightwave Technol. **8**(8), 1137–1144 (1990). [CrossRef]

**20**(14), 1219–1221 (2008). [CrossRef]

10. H. Pan, A. Beling, H. Chen, J. C. Campbell, and P. D. Yoder, “The Influence of Nonlinear Capacitance on the Linearity of a Modified Uni-Traveling Carrier Photodiode,” *2008 International Topical Meeting on Microwave Photonics*, (Institute of Electrical and Electronics Engineers, Gold Coast, Australia, 2008), pp. 82–85.

10. H. Pan, A. Beling, H. Chen, J. C. Campbell, and P. D. Yoder, “The Influence of Nonlinear Capacitance on the Linearity of a Modified Uni-Traveling Carrier Photodiode,” *2008 International Topical Meeting on Microwave Photonics*, (Institute of Electrical and Electronics Engineers, Gold Coast, Australia, 2008), pp. 82–85.

17. H. Pan, A. Beling, H. Chen, and J. C. Campbell, “The Frequency Behavior of the Intermodulation Distortions of Modified Uni-Traveling Carrier Photodiodes Based on Modulated Voltage Measurements,” Quantum Electronics,” IEEE J. **45**(3), 273–277 (2009). [CrossRef]

_{IMD3}on P

_{f}. As shown in the inset of Fig. 3, the slopes of P

_{f}and P

_{IMD3}are 1 and 3, respectively, and the OIP3 intercept is 55 dBm.

**20**(14), 1219–1221 (2008). [CrossRef]

**20**(14), 1219–1221 (2008). [CrossRef]

3. K. Williams, R. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. **14**(1), 84–96 (1996). [CrossRef]

## 4. Conclusions

## References and links

1. | K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector Nonlinearity on a High-Dynamic Range 3 GHz Fiber Optic Link,” J. Lightwave Technol. |

2. | K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes”, |

3. | K. Williams, R. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. |

4. | A. Joshi, S. Datta, and D. Becker, “GRIN Lens Coupled Top-Illuminated Highly Linear InGaAs Photodiodes,” IEEE Photon. Technol. Lett. |

5. | H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The Frequency Behavior of the Third-Order Intercept Point in a Waveguide photodiode,” IEEE Photon. Technol. Lett. |

6. | M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-Power High-Linearity Uni-Traveling-Carrier photodiodes for Analog Photonic Links,” IEEE Photon. Technol. Lett. |

7. | T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in a unitravelingcarrier refracting-facet photodiode and a p–i–n refracting-facet photodiode,” IEEE Photon. Technol. Lett. |

8. | A. Beling, H. Pan, C. Hao, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photon. Technol. Lett. |

9. | A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. |

10. | H. Pan, A. Beling, H. Chen, J. C. Campbell, and P. D. Yoder, “The Influence of Nonlinear Capacitance on the Linearity of a Modified Uni-Traveling Carrier Photodiode,” |

11. | Z. Griffith, Y. M. Kim, M. Dahlstrom, A.C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax>268 GHz,” IEEE Electron Device Lett. |

12. | H. Pan, A. Beling, H. Chen, and J. C. Campbell, “Characterization and Optimization of High-Power InGaAs/InP Photodiodes,” Opt. Quantum Electron. |

13. | M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express |

14. | A. Ramaswamy, J. Klamkin, N. Nunoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” |

15. | M. Dentan and B. de Cremoux, “Numerical Simulation of the Nonlinear Response of a p-i-n photodiode Under High Illumination,” J. Lightwave Technol. |

16. | T. H. Stievater and K. J. Williams, “Thermally induced nonlinearities in high-speed p-i-n photodetectors,” IEEE Photonics Technol. Lett. |

17. | H. Pan, A. Beling, H. Chen, and J. C. Campbell, “The Frequency Behavior of the Intermodulation Distortions of Modified Uni-Traveling Carrier Photodiodes Based on Modulated Voltage Measurements,” Quantum Electronics,” IEEE J. |

**OCIS Codes**

(040.5160) Detectors : Photodetectors

**ToC Category:**

Detectors

**History**

Original Manuscript: August 28, 2009

Revised Manuscript: October 18, 2009

Manuscript Accepted: October 19, 2009

Published: October 21, 2009

**Citation**

Huapu Pan, Zhi Li, Andreas Beling, and Joe C. Campbell, "Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber," Opt. Express **17**, 20221-20226 (2009)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20221

Sort: Year | Journal | Reset

### References

- K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector Nonlinearity on a High-Dynamic Range 3 GHz Fiber Optic Link,” J. Lightwave Technol. 16(2), 192–199 (1998). [CrossRef]
- K. J. Williams, D. A. Tulchinsky, and A. Hastings, “High-power and high-linearity photodiodes”, 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, (Institute of Electrical and Electronics Engineers, Newport Beach, California, 2008), pp.290–291.
- K. Williams, R. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996). [CrossRef]
- A. Joshi, S. Datta, and D. Becker, “GRIN Lens Coupled Top-Illuminated Highly Linear InGaAs Photodiodes,” IEEE Photon. Technol. Lett. 20(17), 1500–1502 (2008). [CrossRef]
- H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The Frequency Behavior of the Third-Order Intercept Point in a Waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000). [CrossRef]
- M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-Power High-Linearity Uni-Traveling-Carrier photodiodes for Analog Photonic Links,” IEEE Photon. Technol. Lett. 20(3), 202–204 (2008). [CrossRef]
- T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in a unitravelingcarrier refracting-facet photodiode and a p–i–n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002). [CrossRef]
- A. Beling, H. Pan, C. Hao, and J. C. Campbell, “Measurement and modeling of a high-linearity modified uni-traveling carrier photodiode,” IEEE Photon. Technol. Lett. 20(14), 1219–1221 (2008). [CrossRef]
- A. Beling, H. Pan, H. Chen, and J. C. Campbell, “Measurement and modelling of high-linearity partially depleted absorber photodiode,” Electron. Lett. 44(24), 1419–1420 (2008). [CrossRef]
- H. Pan, A. Beling, H. Chen, J. C. Campbell, and P. D. Yoder, “The Influence of Nonlinear Capacitance on the Linearity of a Modified Uni-Traveling Carrier Photodiode,” 2008 International Topical Meeting on Microwave Photonics, (Institute of Electrical and Electronics Engineers, Gold Coast, Australia, 2008), pp. 82–85.
- Z. Griffith, Y. M. Kim, M. Dahlstrom, A.C. Gossard, and M. J. W. Rodwell, “InGaAs-InP metamorphic DHBTs grown on GaAs with lattice-matched device performance and fτ, fmax>268 GHz,” IEEE Electron Device Lett. 25, 675–677 (2004). [CrossRef]
- H. Pan, A. Beling, H. Chen, and J. C. Campbell, “Characterization and Optimization of High-Power InGaAs/InP Photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008). [CrossRef]
- M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express 16(16), 12108–12113 (2008). [CrossRef] [PubMed]
- A. Ramaswamy, J. Klamkin, N. Nunoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, (Institute of Electrical and Electronics Engineers, Newport Beach, California, 2008), pp. 286–7.
- M. Dentan and B. de Cremoux, “Numerical Simulation of the Nonlinear Response of a p-i-n photodiode Under High Illumination,” J. Lightwave Technol. 8(8), 1137–1144 (1990). [CrossRef]
- T. H. Stievater and K. J. Williams, “Thermally induced nonlinearities in high-speed p-i-n photodetectors,” IEEE Photonics Technol. Lett. 16(1), 239–241 (2004).
- H. Pan, A. Beling, H. Chen, and J. C. Campbell, “The Frequency Behavior of the Intermodulation Distortions of Modified Uni-Traveling Carrier Photodiodes Based on Modulated Voltage Measurements,” IEEE J. Quantum Electron. 45(3), 273–277 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.