OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20661–20668
« Show journal navigation

Ramsey interferometry with an atom laser

D. Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20661-20668 (2009)
http://dx.doi.org/10.1364/OE.17.020661


View Full Text Article

Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present results on a free-space atom interferometer operating on the first order magnetically insensitive |F=1, mF =0〉→|F=2,mF =0〉 ground state transition of Bose-condensed 87Rb atoms. A pulsed atom laser is output-coupled from a Bose-Einstein condensate and propagates through a sequence of two internal state beam splitters, realized via coherent Raman transitions between the two interfering states. We observe Ramsey fringes with a visibility close to 100% and determine the current and the potentially achievable interferometric phase sensitivity. This system is well suited to testing recent proposals for generating and detecting squeezed atomic states.

© 2009 Optical Society of America

1. Introduction

Atom interferometry [1

1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051 ( 2009). [CrossRef]

] has proven to be an increasingly valuable technique for precision measurements over the last years [2

2. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom Interferometer Measurement of the Newtonian Constant of Gravity,” Science 315, 74 ( 2007). [CrossRef] [PubMed]

, 3

3. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Determination of the Newtonian Gravitational Constant Using Atom Interferometry,” Phys. Rev. Lett. 100, 050801 ( 2008). [CrossRef] [PubMed]

, 4

4. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, “Contrast Interferometry using Bose-Einstein Condensates to Measure h/m and a,” Phys. Rev. Lett. 89, 140401 ( 2002). [CrossRef] [PubMed]

, 5

5. M. Cadoret, E. de Mirandes, P Cladé, S. Guellati-Khélifa, C Schwob, F. Nez, L. Julien, and F. Biraben, “Combination of Bloch Oscillations with a Ramsey-Bordé Interferometer: New Determination of the Fine Structure Constant,” Phys. Rev. Lett. 101, 230801 ( 2008). [CrossRef] [PubMed]

, 6

6. J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstäubler, N. Rehbein, C. Lisdat, E. M. Rasel, W. Ertmer, H. Schnatz, B. Lipphardt, and G. Grosche, “Absolute frequency measurement of the magnesium inter-combination transition,” Phys. Rev. A 78, 033830 ( 2008). [CrossRef]

]. Compared to photons, atoms offer the advantage of having an intrinsically more complex structure and therefore allowing a larger range of possible measurements to be undertaken. There have been a number of fundamentally important experiments making use of the atomic mass to measure the Newtonian gravitational constant G [2

2. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom Interferometer Measurement of the Newtonian Constant of Gravity,” Science 315, 74 ( 2007). [CrossRef] [PubMed]

, 3

3. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Determination of the Newtonian Gravitational Constant Using Atom Interferometry,” Phys. Rev. Lett. 100, 050801 ( 2008). [CrossRef] [PubMed]

] and the fine structure constant α [4

4. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, “Contrast Interferometry using Bose-Einstein Condensates to Measure h/m and a,” Phys. Rev. Lett. 89, 140401 ( 2002). [CrossRef] [PubMed]

, 5

5. M. Cadoret, E. de Mirandes, P Cladé, S. Guellati-Khélifa, C Schwob, F. Nez, L. Julien, and F. Biraben, “Combination of Bloch Oscillations with a Ramsey-Bordé Interferometer: New Determination of the Fine Structure Constant,” Phys. Rev. Lett. 101, 230801 ( 2008). [CrossRef] [PubMed]

]. Recently, atomic interferometers have been proposed to be used for tests of general relativistic effects [7

7. S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “General relativistic effects in atom interferometry,” Phys. Rev. D 78, 042003 ( 2008). [CrossRef]

] and the detection of gravitational waves [8

8. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 ( 2008). [CrossRef]

]. All of these experiments and proposals are based on thermal atoms. In many cases, such as atomic Sagnac interferometry [9

9. T. Müller, T. Wendrich, M. Gilowski, C. Jentsch, E. M. Rasel, and W. Ertmer, “Versatile compact atomic source for high-resolution dual atom interferometry,” Phys. Rev. A 76, 063611 ( 2007). [CrossRef]

], improved performance can be achieved by using laser-cooled atoms from a magneto-optical trap, substantially narrowing the atomic velocity distribution. Bose-Einstein condensates (BECs) comprise a macroscopic number of atoms in a single momentum state and have an even narrower momentum width, limited by the Heisenberg uncertainty principle. This narrow velocity spread makes BECs an excellent candidate for highly velocity selective light-based beam splitters in atom interferometers. Furthermore, Bose-condensed atoms in the form of a freely propagating pulse, known as an atom laser, are a promising way to produce reduced-uncertainty states (squeezed states) [10

10. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, “Squeezed atomic states and projection noise in spectroscopy,” Phys. Rev. A 50, 67 ( 1994). [CrossRef] [PubMed]

, 11

11. M .Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138 ( 1993). [CrossRef] [PubMed]

, 12

12. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 ( 2005). [CrossRef]

, 13

13. M. T. Johnsson and S. A. Haine, “Generating Quadrature Squeezing in an Atom Laser through Self-Interaction,” Phys. Rev. Lett. 99, 010401 ( 2007). [CrossRef] [PubMed]

], potentially leading to a further increase in interferometric sensitivity (analog to the increased phase sensitivity in optical interferometers by using squeezed photon states [14

14. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 ( 1981). [CrossRef]

]).

Atom interferometry with confined high density BECs is strongly affected by phase diffusion due to mean field interactions in the condensate, significantly limiting the coherence time [1

1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051 ( 2009). [CrossRef]

, 15

15. Y. Castin and J. Dalibard, “Relative phase of two Bose-Einstein condensates,” Phys. Rev. A 55, 4330 ( 1997). [CrossRef]

]. Experiments to overcome this barrier have been conducted by, e.g., reducing the atomic interactions via a magnetic Feshbach resonance [16

16. M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, “Atom Interferometry with a Weakly Interacting Bose-Einstein Condensate,” Phys. Rev. Lett. 100, 080405 ( 2008). [CrossRef] [PubMed]

] or utilizing number squeezed states [17

17. W. Li, A. K. Tuchman, H-C Chien, and M. A. Kasevich, “Extended Coherence Time with Atom-Number Squeezed States,” Phys. Rev. Lett. 98, 040402 ( 2007). [CrossRef] [PubMed]

, 18

18. G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip,” Phys. Rev. Lett. 98, 030407 ( 2007). [CrossRef] [PubMed]

]. Alternatively, mean field interactions can be significantly lowered by using a more dilute cloud of atoms. Releasing the BEC from the confining potential and thereby decreasing its density greatly reduces the issue of phase diffusion and makes Bose-condensed atoms a promising alternative for free-space atom interferometry, as demonstrated by Torii et al. [19

19. Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, T. Kuga, L. Deng, and E.W. Hagley, “Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate,” Phys. Rev. A 61, 041602(R) ( 2000). [CrossRef]

] in the context of Bragg diffraction interferometry with atomic momentum states.

Internal state atom interferometers commonly rely on Ramsey-type interferometry, using the method of separated oscillatory fields [20

20. N. F. Ramsey, “A Molecular Beam Resonance Method with Separated Oscillating Fields,” Phys. Rev. 78, 695 ( 1950). [CrossRef]

]. The most fundamental version of this technique includes two temporally or spatially separated beam splitters that couple a two-level system to an external driving field. Control of the time between the two beam splitters or the phase or the frequency of the driving field allows the observation of Ramsey fringes - an oscillation in population transfer between two internal states. The position of the fringe pattern contains information about the relative phase accumulated by the two atomic states, enabling precision measurements with atom inteferometers. For uncorrelated atoms, the precision of such a device is limited by the projection noise in the detection process [10

10. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, “Squeezed atomic states and projection noise in spectroscopy,” Phys. Rev. A 50, 67 ( 1994). [CrossRef] [PubMed]

], commonly known as the standard quantum limit. To achieve detection sensitivities beyond this limit, squeezed states [11

11. M .Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138 ( 1993). [CrossRef] [PubMed]

] have to be used as a source for the interferometer. Spin squeezing has been demonstrated with thermal Rubidium [21

21. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “Reduced-Quantum-Uncertainty States of an Ensemble of Two-Level Atoms,” arXiv:0810.2582v1

] and Cesium [22

22. J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik, “Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit,” arXiv:0810.3545v1

] atoms, yielding reduced fluctuations in the population difference between the two internal states used in modern atomic fountain clocks. Recently, Estève et al. [23

23. J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, “Squeezing and entanglement in a BoseEinstein condensate,” Nature 455, 1216 ( 2008). [CrossRef] [PubMed]

] achieved squeezing of Bose-condensed atoms in an optical lattice. The decreased uncertainty in the relative number of atoms at neighboring lattice sites makes their setup a good candidate for improved precision interferometric measurements. Different mechanisms for squeezing of a freely propagating atom laser have been proposed by Haine et al. [12

12. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 ( 2005). [CrossRef]

] and Johnsson et al. [13

13. M. T. Johnsson and S. A. Haine, “Generating Quadrature Squeezing in an Atom Laser through Self-Interaction,” Phys. Rev. Lett. 99, 010401 ( 2007). [CrossRef] [PubMed]

]. The setup presented in this Letter is well suited for the implementation of either of these schemes and the most direct way of detecting the effect of squeezing on the performance of an atom laser interferometer.

2. The atom laser interferometer

We here present results on a free-space 87Rb atom laser interferometer operating on the |F=1,mF=0i→|F=2,mF=0i ground state transition, which is to first order insensitive to magnetic fields. An atom laser consisting of N=7.7×104 atoms is output-coupled from a Bose-Einstein condensate and travels under gravity through a sequence of two Ramsey-type (internal state) beam splitters. To the best of our knowledge, this is the first such demonstration using Bose-condensed, instead of thermal atoms, in a free-space internal-state interferometer.

2.1. Experimental scheme

The setup for producing Bose-Einstein condensates is described in detail in reference [24

24. D. Döring, N. P. Robins, C. Figl, and J. D. Close, “Probing a Bose-Einstein condensate with an atom laser,” Opt. Express 16, 13893 ( 2008).

]. In brief, we collect and cool 1010 87Rb atoms in a three-dimensional magneto-optical trap (MOT), loaded from a two-dimensional MOT. After polarization gradient cooling and optical pumping into the desired internal ground state |F=1,mF=-1i, the atoms are mechanically transported and transferred into a harmonic quadrupole-Ioffe-configuration (QUIC) trap. We use radio-frequency induced evaporative cooling and achieve a Bose-Einstein condensate of up to 106 atoms in the |F=1,mF=-1〉 state. By means of radio frequency (rf) induced spin-flips [25

25. M-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, “Output Coupler for Bose-Einstein Condensed Atoms,” Phys. Rev. Lett. 78, 582 ( 1997). [CrossRef]

], atoms are coherently transferred from the condensate into the untrapped |F=1,mF=0〉 state, in which they fall away from the condensate under gravity.

Starting from the output-coupled |F=1,mF=0〉 atom laser pulse, we construct an internal state interferometer for the two ground states |F=1,mF=0〉 and |F=2,mF=0〉 of 87Rb. They are coupled by copropagating circularly polarized focussed Raman beams, allowing spatially selective addressing of the atom laser. In order to achieve the required high relative phase stability of the different frequency components in the Raman beams, we use a single external cavity diode laser (ECDL), detuned by Δ=100GHz from the Rb D 2-line, as the laser source for the interferometer. Via an electro-optic phase modulator (EOM), we produce sidebands with a spacing of 3.4GHz, corresponding to half the ground state hyperfine splitting of 87Rb, on the light coming from the ECDL. The stability of the microwave source is improved by locking it to a GPS-based external reference oscillator. As the Rabi frequency for Raman transitions driven by purely phase-modulated light vanishes due to destructive interference [26

26. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17, 2319 ( 2009). [CrossRef] [PubMed]

, 27

27. P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. Miller, D. L. Moehring, D. Stick, and C. Monroe, “Atomic qubit manipulations with an electro-optic modulator,” Opt. Lett. 28, 1582 ( 2003). [CrossRef] [PubMed]

], the EOM is placed in one arm of a Mach-Zehnder interferometer (MZI). This allows us to partly convert phase into amplitude modulation and drive the desired transition in the atom laser beam splitters. To reduce phase fluctuations between the two frequency components driving the Raman transitions, the two arms of the Mach-Zehnder interferometer are locked using a piezo-controlled mirror and a balanced homodyne detection scheme. The modulation setup is similar to the one described in [26

26. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17, 2319 ( 2009). [CrossRef] [PubMed]

], where a true two-state atom laser output-coupling scheme is achieved via selective Raman transitions between only two states of the ground state hyperfine manifold [26

26. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17, 2319 ( 2009). [CrossRef] [PubMed]

, 28

28. I. Bloch, M. Köhl, M. Greiner, T. W. Hänsch, and T. Esslinger, “Optics with an Atom Laser Beam,” Phys. Rev. Lett. 87, 030401 ( 2001). [CrossRef] [PubMed]

].

Fig. 1. (a) Level scheme and (b) experimental setup of the Raman beam splitters for the atom interferometer. The atom laser pulse propagates under gravity through the two beam splitters and is subsequently imaged via a state selective absorption imaging scheme. Splitting the optical beam path with a calcite crystal close to the atom laser interferometer allows for improved relative stability of the two beam splitter positions. The light source is an external cavity diode laser (ECDL), in combination with an electro-optic modulator (EOM) placed in one arm of a Mach-Zehnder interferometer (MZI).

The geometric design for the realization of two spatially separated Ramsey beam splitters is shown in figure 1. Two vertically displaced sheets of light are produced using a combination of a calcite crystal and cylindrical lenses. The light from the modulation setup is pre-focussed by the first cylindrical lens (focal length f=500mm) and subsequently sent through a birefringent calcite crystal to produce two beams with a spatial separation of 2mm. The second cylindrical lens (f=100mm) focusses the light onto the propagation axis of the atom laser and generates two sheets of light with a width (2w 0) of 40µm. A pulsed atom laser is output-coupled from the condensate and travels through the Raman light sheets. The velocity of the atom laser pulse depends on its fall time, which means that for an identical splitting ratio, the intensity requirements for the upper and the lower beam splitter are different. The relative intensity is controlled by a λ/2-waveplate placed before the (polarization-dependent) calcite crystal. The propagation time Tp=6.04(3)ms between the beam splitters is determined from the Ramsey fringe pattern (see below). In a separate calibration experiment, we measure the time T 0 it takes to reach the first beam splitter, T 0=5.0(2)ms. Converting these measurements into spatial coordinates yields a separation of 474(10)µm between the two beam splitters and a distance of 123(10)µm between the center of the Bose-Einstein condensate and the upper beam splitter. Relative position fluctuations of the two light sheets are strongly supressed in this system, as the beams travel along the same path up to the calcite crystal, and vibrations of optical elements in the split beam path are of common mode to both of the beams. A stable absolute position is ensured by a rigid mechanical assembly.

After traversing the two beam splitters, the atom laser pulse is imaged via a state selective absorption imaging sequence. We first image atoms in the F=2 hyperfine state with a resonant light pulse. The momentum imparted by the imaging photons is large enough for the atoms to leave the imaging region within a time well below 1ms. After a delay time of 1ms, corresponding to a travel distance of the atom pulse of about 150µm, we repump all atoms from the F=1 into the F=2 manifold with a light pulse resonant to the F=1 atoms and subsequently take a second absorption image. This procedure yields an independentmeasurement of the population in both internal states, allowing us to neglect the influence of run-to-run number fluctuation in our Bose-Einstein condensates.

2.2. Ramsey fringe measurement

We record Ramsey fringes by varying the detuning δ from two-photon resonance with the EOM. The solid red line in figure 2 depicts a typical experimental data set. The Ramsey fringe period is determined via a fit to the central part of the fringe pattern and gives a value of f 0=165.7(8)Hz. The propagation time between the beam splitters is the inverse of that value, Tp=6.04(3)ms. The power-broadenedwidth of the Ramsey fringe envelope (FWHM) is about 3kHz, determined by the two-photon Rabi frequency. We adjust the light intensity such that for a single beam splitter 50% of the atomic population is transferred, and thus the envelope width corresponds to the inverse of the traversal time through the interaction zones. The visibility of the Ramsey fringes is close to 100%, showing the good spatial mode matching and narrow velocity distribution of the interfering atompulse. We apply a semi-classicalmodel for the light-atom interaction and simulate the Ramsey interferometer based on Raman transitions between the two internal states driven by a light field containing two frequencies. The result of the simulation with conditions comparable to the ones present in the experiment is shown by the blue dashed line in figure 2. This simplified theoretical simulation shows reasonable agreement with the shape of the Ramsey fringe pattern. Due to differential light shifts, the Ramsey fringes are not centered around zero two-photon detuning δ.

Fig. 2. Ramsey fringes measured over a range of 6.5kHz. The red solid curve shows an experimental data set, and the blue dashed curve depicts simulated Ramsey fringes for comparable experimental conditions. The upper (lower) clouds of atoms in the absorption pictures above the graph show the population in the |F=2,mF=0〉 (|F=1,mF=0〉) state, for different detunings from two-photon resonance. Two adjacent absorption pictures correspond to a frequency difference of 20Hz.

2.3. Interferometric sensitivity

The phase sensitivity of the interferometer is determined by the signal-to-noise ratio on the Ramsey fringes. We determine the noise via a separate measurement of a Ramsey fringe (figure 3). For each data point in the graph, we average over five experimental runs, corresponding to a measurement time of six minutes per point. Given the uncertainties (SEM) in figure 3 and the measured fringe visibility, we calculate the minimum measurable phase shift to 0.24(10) rad. The accumulated phase in an interferometer is usually proportional to the measured quantity, such as a rotation or a differential energy shift due to a magnetic field. For demonstrative reasons, we calculate the frequency sensitivity in the presented apparatus and obtain a value of 6.3(2.6)Hz, corresponding to a relative frequency sensitivity of 9.2(3.8)×10-10. This sensitivity does not compete with highly accurate frequency measurements in atomic clocks (see, e. g., [29

29. R. Wynands and S. Weyers, “Atomic fountain clocks,” Metrologia42, S64 ( 2005).

]); however, the purpose of this paper is to demonstrate an atom laser based Ramsey interferometer rather than the improvement of current frequency sensitivities. The overall number of detected atoms per shot is N=7.7×104. Mechanical fluctuations in the imaging beam path lead to a time varying interference pattern on the images, resulting in a standard deviation of the detected atom number of σ=4×103. However, due to our normalization procedure, this uncertainty does not strongly influence the observed Ramsey signal. The current sensitivity is limited by different noise sources. The Mach-Zehnder interferometer used in the light modulation setup introduces a phase difference between its two arms, and fluctuations in that parameter inevitably lead to a change in Rabi frequency and light shift at the positions of the two beam splitters. Despite our balanced homodyne locking scheme, this mechanism is a dominant source of uncertainty and strongly increases the noise on the Ramsey signal. Furthermore, mechanical vibrations of the optical components in the beam path change the position of the beam splitters compared to the position of the condensate in the magnetic trap. We reduce the influence of mechanical vibrations by using a solid and compact optical setup. In the regime that we are operating the interferometer, phase noise of the microwave source driving the electro-optic modulator can most likely be neglected. By eliminating all the above mentioned noise sources, optimizing the detected atom number and extending the propagation time Tp from 6ms to 65ms (the geometrical limit of our current apparatus), we can potentially achieve a phase sensitivity of 9.8×10-4 rad (corresponding to a frequency sensitivity of 2.4mHz) when operating at the standard quantum limit.

Fig. 3. Noise measurement for a typical sequence of Ramsey fringes. Each data point is averaged over five experimental runs. The red dots (blue circles) show the population in the |F=2,mF=0〉(|F=1,mF=0〉) state.

3. Conclusion

In the work presented above, we demonstrate free-space Ramsey interferometry on the first order magnetically insensitive transition |F=1,mF=0〉→|F=2,mF=0〉 of Bose-condensed 87Rb atoms. We plan to extend the current setup and build an atomic Mach-Zehnder interferometer with spatially separated arms, allowing us to introduce sensitivity to spatial effects, such as rotations, into our experiment. Due to its narrow velocity distribution, the atom laser is well suited for large momentum transfer beam splitters, which are a promising way towards increased interferometric sensitivity. However, the average flux of the atom laser is lower than that achieved in thermal atom interferometer sensors, yielding a potentially lower signal-to-noise ratio. To a large extent, this could be improved by extending the recently realized pumping experiment [30

30. N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4, 731 ( 2008). [CrossRef]

, 31

31. D. Döring, G. R. Dennis, N. P. Robins, M. Jeppesen, C. Figl, J. J. Hope, and J. D. Close, “Pulsed pumping of a Bose-Einstein condensate,” Phys. Rev. A 79, 063630 ( 2009). [CrossRef]

] towards a truly continuous atom laser. The alternative route towards a decreased variance in (relative) atom number is the introduction of squeezing onto our atom laser beam. When the major noise contribution is given by the quantum projection noise of the population in the two interfering states, squeezing of the pseudo-spin representing the effective two-level system can significantly decrease the variance. There have been different proposals of how to achieve squeezing of an atom laser beam [12

12. S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 ( 2005). [CrossRef]

, 13

13. M. T. Johnsson and S. A. Haine, “Generating Quadrature Squeezing in an Atom Laser through Self-Interaction,” Phys. Rev. Lett. 99, 010401 ( 2007). [CrossRef] [PubMed]

], both of which can potentially be realized in our setup.

Acknowledgments

This work was financially supported by the Australian Research Council Centre of Excellence program.

References and links

1.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051 ( 2009). [CrossRef]

2.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom Interferometer Measurement of the Newtonian Constant of Gravity,” Science 315, 74 ( 2007). [CrossRef] [PubMed]

3.

G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Determination of the Newtonian Gravitational Constant Using Atom Interferometry,” Phys. Rev. Lett. 100, 050801 ( 2008). [CrossRef] [PubMed]

4.

S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, “Contrast Interferometry using Bose-Einstein Condensates to Measure h/m and a,” Phys. Rev. Lett. 89, 140401 ( 2002). [CrossRef] [PubMed]

5.

M. Cadoret, E. de Mirandes, P Cladé, S. Guellati-Khélifa, C Schwob, F. Nez, L. Julien, and F. Biraben, “Combination of Bloch Oscillations with a Ramsey-Bordé Interferometer: New Determination of the Fine Structure Constant,” Phys. Rev. Lett. 101, 230801 ( 2008). [CrossRef] [PubMed]

6.

J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstäubler, N. Rehbein, C. Lisdat, E. M. Rasel, W. Ertmer, H. Schnatz, B. Lipphardt, and G. Grosche, “Absolute frequency measurement of the magnesium inter-combination transition,” Phys. Rev. A 78, 033830 ( 2008). [CrossRef]

7.

S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “General relativistic effects in atom interferometry,” Phys. Rev. D 78, 042003 ( 2008). [CrossRef]

8.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Atomic gravitational wave interferometric sensor,” Phys. Rev. D 78, 122002 ( 2008). [CrossRef]

9.

T. Müller, T. Wendrich, M. Gilowski, C. Jentsch, E. M. Rasel, and W. Ertmer, “Versatile compact atomic source for high-resolution dual atom interferometry,” Phys. Rev. A 76, 063611 ( 2007). [CrossRef]

10.

D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, “Squeezed atomic states and projection noise in spectroscopy,” Phys. Rev. A 50, 67 ( 1994). [CrossRef] [PubMed]

11.

M .Kitagawa and M. Ueda, “Squeezed spin states,” Phys. Rev. A 47, 5138 ( 1993). [CrossRef] [PubMed]

12.

S. A. Haine and J. J. Hope, “Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams,” Phys. Rev. A 72, 033601 ( 2005). [CrossRef]

13.

M. T. Johnsson and S. A. Haine, “Generating Quadrature Squeezing in an Atom Laser through Self-Interaction,” Phys. Rev. Lett. 99, 010401 ( 2007). [CrossRef] [PubMed]

14.

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693 ( 1981). [CrossRef]

15.

Y. Castin and J. Dalibard, “Relative phase of two Bose-Einstein condensates,” Phys. Rev. A 55, 4330 ( 1997). [CrossRef]

16.

M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, “Atom Interferometry with a Weakly Interacting Bose-Einstein Condensate,” Phys. Rev. Lett. 100, 080405 ( 2008). [CrossRef] [PubMed]

17.

W. Li, A. K. Tuchman, H-C Chien, and M. A. Kasevich, “Extended Coherence Time with Atom-Number Squeezed States,” Phys. Rev. Lett. 98, 040402 ( 2007). [CrossRef] [PubMed]

18.

G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, “Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip,” Phys. Rev. Lett. 98, 030407 ( 2007). [CrossRef] [PubMed]

19.

Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, T. Kuga, L. Deng, and E.W. Hagley, “Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate,” Phys. Rev. A 61, 041602(R) ( 2000). [CrossRef]

20.

N. F. Ramsey, “A Molecular Beam Resonance Method with Separated Oscillating Fields,” Phys. Rev. 78, 695 ( 1950). [CrossRef]

21.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “Reduced-Quantum-Uncertainty States of an Ensemble of Two-Level Atoms,” arXiv:0810.2582v1

22.

J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik, “Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit,” arXiv:0810.3545v1

23.

J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, “Squeezing and entanglement in a BoseEinstein condensate,” Nature 455, 1216 ( 2008). [CrossRef] [PubMed]

24.

D. Döring, N. P. Robins, C. Figl, and J. D. Close, “Probing a Bose-Einstein condensate with an atom laser,” Opt. Express 16, 13893 ( 2008).

25.

M-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, “Output Coupler for Bose-Einstein Condensed Atoms,” Phys. Rev. Lett. 78, 582 ( 1997). [CrossRef]

26.

J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, “A two-state Raman coupler for coherent atom optics,” Opt. Express 17, 2319 ( 2009). [CrossRef] [PubMed]

27.

P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. Miller, D. L. Moehring, D. Stick, and C. Monroe, “Atomic qubit manipulations with an electro-optic modulator,” Opt. Lett. 28, 1582 ( 2003). [CrossRef] [PubMed]

28.

I. Bloch, M. Köhl, M. Greiner, T. W. Hänsch, and T. Esslinger, “Optics with an Atom Laser Beam,” Phys. Rev. Lett. 87, 030401 ( 2001). [CrossRef] [PubMed]

29.

R. Wynands and S. Weyers, “Atomic fountain clocks,” Metrologia42, S64 ( 2005).

30.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4, 731 ( 2008). [CrossRef]

31.

D. Döring, G. R. Dennis, N. P. Robins, M. Jeppesen, C. Figl, J. J. Hope, and J. D. Close, “Pulsed pumping of a Bose-Einstein condensate,” Phys. Rev. A 79, 063630 ( 2009). [CrossRef]

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.1335) Atomic and molecular physics : Atom optics
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 24, 2009
Manuscript Accepted: October 23, 2009
Published: October 26, 2009

Citation
D Döring, J. E. Debs, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, "Ramsey interferometry with an atom laser," Opt. Express 17, 20661-20668 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20661


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, "Optics and interferometry with atoms and molecules," Rev. Mod. Phys. 81, 1051 (2009). [CrossRef]
  2. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, "Atom Interferometer Measurement of the Newtonian Constant of Gravity," Science 315, 74 (2007). [CrossRef] [PubMed]
  3. G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, "Determination of the Newtonian Gravitational Constant Using Atom Interferometry," Phys. Rev. Lett. 100, 050801 (2008). [CrossRef] [PubMed]
  4. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, "Contrast Interferometry using Bose-Einstein Condensates to Measure h/m and α," Phys. Rev. Lett. 89, 140401 (2002). [CrossRef] [PubMed]
  5. M. Cadoret, E. de Mirandes, P Cladé, S. Guellati-Khélifa, C Schwob, F. Nez, L. Julien, and F. Biraben, "Combination of Bloch Oscillations with a Ramsey-Bordé Interferometer: New Determination of the Fine Structure Constant," Phys. Rev. Lett. 101, 230801 (2008). [CrossRef] [PubMed]
  6. J. Friebe, A. Pape, M. Riedmann, K. Moldenhauer, T. Mehlstäubler, N. Rehbein, C. Lisdat, E. M. Rasel, W. Ertmer, H. Schnatz, B. Lipphardt, and G. Grosche, "Absolute frequency measurement of the magnesium intercombination transition," Phys. Rev. A 78, 033830 (2008). [CrossRef]
  7. S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, "General relativistic effects in atom interferometry," Phys. Rev. D 78, 042003 (2008). [CrossRef]
  8. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, "Atomic gravitational wave interferometric sensor," Phys. Rev. D 78, 122002 (2008). [CrossRef]
  9. T. Müller, T. Wendrich, M. Gilowski, C. Jentsch, E. M. Rasel, and W. Ertmer, "Versatile compact atomic source for high-resolution dual atom interferometry," Phys. Rev. A 76, 063611 (2007). [CrossRef]
  10. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, "Squeezed atomic states and projection noise in spectroscopy," Phys. Rev. A 50, 67 (1994). [CrossRef] [PubMed]
  11. M. Kitagawa and M. Ueda, "Squeezed spin states," Phys. Rev. A 47, 5138 (1993). [CrossRef] [PubMed]
  12. S. A. Haine and J. J. Hope, "Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled-atom laser beams," Phys. Rev. A 72, 033601 (2005). [CrossRef]
  13. M. T. Johnsson and S. A. Haine, "Generating Quadrature Squeezing in an Atom Laser through Self-Interaction," Phys. Rev. Lett. 99, 010401 (2007). [CrossRef] [PubMed]
  14. C. M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693 (1981). [CrossRef]
  15. Y. Castin and J. Dalibard, "Relative phase of two Bose-Einstein condensates," Phys. Rev. A 55, 4330 (1997). [CrossRef]
  16. M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, "Atom Interferometry with a Weakly Interacting Bose-Einstein Condensate," Phys. Rev. Lett. 100, 080405 (2008). [CrossRef] [PubMed]
  17. W. Li, A. K. Tuchman, H-C Chien, and M. A. Kasevich, "Extended Coherence Time with Atom-Number Squeezed States," Phys. Rev. Lett. 98, 040402 (2007). [CrossRef] [PubMed]
  18. G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, "Long Phase Coherence Time and Number Squeezing of Two Bose-Einstein Condensates on an Atom Chip," Phys. Rev. Lett. 98, 030407 (2007). [CrossRef] [PubMed]
  19. Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, T. Kuga, L. Deng, and E.W. Hagley, "Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate," Phys. Rev. A 61, 041602(R) (2000). [CrossRef]
  20. N. F. Ramsey, "A Molecular Beam Resonance Method with Separated Oscillating Fields," Phys. Rev. 78, 695 (1950). [CrossRef]
  21. M. H. Schleier-Smith, I. D. Leroux and V. Vuletić, "Reduced-Quantum-Uncertainty States of an Ensemble of Two-Level Atoms," arXiv:0810.2582v1
  22. J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik, "Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit," arXiv:0810.3545v1
  23. J. Est`eve, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler, "Squeezing and entanglement in a BoseEinstein condensate," Nature 455, 1216 (2008). [CrossRef] [PubMed]
  24. D. Döring, N. P. Robins, C. Figl, and J. D. Close, "Probing a Bose-Einstein condensate with an atom laser," Opt. Express 16, 13893 (2008).
  25. M-O. Mewes, M. R. Andrews, D. M. Kurn, D. S. Durfee, C. G. Townsend, and W. Ketterle, "Output Coupler for Bose-Einstein Condensed Atoms," Phys. Rev. Lett. 78, 582 (1997). [CrossRef]
  26. J. E. Debs, D. Döring, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close, "A two-state Raman coupler for coherent atom optics," Opt. Express 17, 2319 (2009). [CrossRef] [PubMed]
  27. P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. Miller, D. L. Moehring, D. Stick, and C. Monroe, "Atomic qubit manipulations with an electro-optic modulator," Opt. Lett. 28, 1582 (2003). [CrossRef] [PubMed]
  28. I. Bloch, M. Köhl, M. Greiner, T. W. Hänsch, and T. Esslinger, "Optics with an Atom Laser Beam," Phys. Rev. Lett. 87, 030401 (2001). [CrossRef] [PubMed]
  29. R. Wynands and S. Weyers, "Atomic fountain clocks," Metrologia 42, S64 (2005).
  30. N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, "A pumped atom laser," Nat. Phys. 4, 731 (2008). [CrossRef]
  31. D. Döring, G. R. Dennis, N. P. Robins, M. Jeppesen, C. Figl, J. J. Hope, and J. D. Close, "Pulsed pumping of a Bose-Einstein condensate," Phys. Rev. A 79, 063630 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited