OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 23 — Nov. 9, 2009
  • pp: 20721–20726
« Show journal navigation

Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels

Wansu Lim, Tae-Sik Cho, Changho Yun, and Kiseon Kim  »View Author Affiliations


Optics Express, Vol. 17, Issue 23, pp. 20721-20726 (2009)
http://dx.doi.org/10.1364/OE.17.020721


View Full Text Article

Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

© 2009 Optical Society of America

1. Introduction

Nowadays, as Internet is widely spread, a volume of multimedia traffic is streamed into networks and the number of users is ever increasing. Hence, efficient wideband communication systems which accommodatemultiple users are necessary. One of the good candidate for wideband communication systems is subcarrier multiplexing (SCM) based free space optical (FSO) systems because SCM schemes have great flexibility in allocating bandwidth, with utilizing a single wavelength, thereby enabling them to accommodate a wide range of users and applications [1

1. R. Olshansky, V. A. Lanzisera, and P. M. Hill, “Subcarrier multiplexed lightwave systems for broad-band distribution,” J. Lightwave Technol. 7, 1329–1342 ( 1989). [CrossRef]

] and FSO systems can provide cost-effective broadband bandwidth with high data rates [2

2. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24, 4750–4762 ( 2006). [CrossRef]

].

Fig. 1. Overall architecture of the FSO system considering of optical transmitter, turbulence channels, and optical receiver.

The primary methods for enhancing the performance of the SCM based FSO systems has been to increase the signal power to ensure a high signal-to-noise ratio (SNR). However, this increase in power also results in problems that degrade system performance, such as an increase of laser relative intensity noise (RIN), and harmonic distortion from the Mach-Zehnder modulator (MZM) and other devices in FSO systems. Among these degradation factors, intermodulation distortion can significantly degrade the system performance because intermodulation power is typically higher than noise power in systems with high input power [3

3. T. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 ( 2006). [CrossRef]

]. Fortunately, a majority of second-order intermodulation (IM2) terms can be eliminated by a symmetrical dual-drive MZM (DD-MZM). However, third-order intermodulation (IM3) terms are more severe as they are too close to the fundamental frequency component, and their power increase is faster [4

4. L. Besser and R. Gilmore, Practical RF Circuit Design For Modern Wireless Systems. (Artech House, Boston·London, 2003)

]. Thus, a more detailed investigation of SCM-based FSO system performance that considers the effects of IM3 is required.

In this paper, we first represent the signal-to-noise-and-distortion ratio (SNDR) that includes the IM3 factor by using a Bessel expansion with a small-signal approximation. We then analyze the average BER by considering the effects of IM3 under atmospheric channels, where the log-normal and exponential distributions describe turbulence-induced fading in a range from severe to moderate. Finally, numerical results are provided to illustrate the degradation of performance according to the input signal power and the scintillation index.

2. FSO system architecture and derivation of SNDR

Figure 1 describes the overall architecture of an SCM-based FSO system. Here, xLD(t) is the optical signal from a laser diode (LD), we assume that the phase noise of LD is negligible, xRF (t)=x 1(t)+…+xm(t)+…+xM(t) is the group of input RF signals, xm(t) is the tone signal allocated to one user in the SCM group, and PD is a photodetector. As shown in the Fig. 1, the optical signal xLD(t) and the input RF signals xRF (t) can be modulated using DD-MZM and a 900 phase shifter to generate optical single-sideband (OSSB) signals. Then, The input signals are xLD(t)=A·exp(LDt), xRF(t)=∑M m=1 xm(t), and xm(t)=VRF·cos(ωmt) where 1≤mM, A and VRF are the optical carrier and RF signal amplitudes, respectively, and wLD and wm are the angular frequencies of the signals. We assume that the frequency difference between users is larger than the bit duration; thus, we use tone for the user signal.

Using a Bessel function, the output signal of DD-MZM can be expressed as [3

3. T. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 ( 2006). [CrossRef]

]

ET(t)=Latt·A·ejωLDt2{expj[π·xRF(t)2Vπ]+expj[π2+π·x˜RF(t)2Vπ]}
Latt·A·ejωLDt2{B(t)+C(t)}
B(t)=n=jnejnω1tJn(βπ)××n=jnejnωmtJn(βπ)××n=jnejnωMtJn(βπ)
C(t)=jn=ejnω1tJn(βπ)××jn=ejnωmtJn(βπ)××jn=ejnωMtJn(βπ)
(1)

where Vπ and β=VRF/(√2Vµ) are the switching voltage and the normalized ac of DD-MZM, respectively. In addition, xRF(t) is the phase-shifted version of Latt=10LDM20 is the attenuation of DD-MZM due to insertion loss LDM. From (1), the fundamental and IM3 components will be generated by beating each signal; then, after the transmission of the turbulence channels, the optical signal can be detected by the PD. In this paper, we focus our investigation on the worst performances among the SCM group due to the IM3 components, since the worst performance may limit the whole system. Specifically, we consider IM3 components having the same frequency as the user–at most by ⌊(M-1)/2⌋ times-because when M is odd, the worst user has an (M-1)/2 pair, and when M is even the worst user has an M/2-1 pair. In this case, the photocurrent i(t) after passing PD can be obtained as

i(t)=ER(t)2+n(t)
=ifw(t)+i2fw+1fw+2(t)+i2fw+2fw+4(t)+i2fw+3fw+6(t)+
+i2fw+mfw+2m(t)++i2fw+M12fw+2M12(t)+is,o(t)+n(t)
(2)

where ℜ is the responsivity, ER(t) is the received optical signal at PD, ifw(t) is the fundamental frequency component of the worst user, i2fw+1fw+2(t)++i2fw+(M1)2fw+2(M1)2(t) are the IM3 components happening at the same frequency as the worst user by ⌊ (M-1)/2⌋ times, i s,o(t) are other spurious terms such as IM2, and n(t) are additive noises such as thermal and shot noises. Note, however, that IM2 terms are ignored in this paper since they are easily removed by utilizing an appropriate filter; hence, we concentrate on the fundamental frequency and IM3 components. Additionally, we assume that high-order components of the Bessel function are negligible since the value of βπ in a Bessel function is very small due to the fact that VπVRF in general. As such, using power P=|i(t)|2 and Jn(βπ)≈(βπ)n/2nn! for βπ≪1 [3

3. T. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 ( 2006). [CrossRef]

], the power of a fundamental frequency component of the worst user Pfw can be expressed as

Pfw=(δLatt2A2·J02M1(βπ)·J1(βπ))2
(12βπδLatt2A2)2,βπ1
(3)

where δ is the turbulence channel coefficient. Similarly, the power of P2fw+mfw+2m can be obtained as

P2fw+mfw+2m=2M12(δLatt2A2)2(DIM2+EIM2)
2M12(116(βπ)3δLatt2A2)2Ψ,βπ1
(4)
DIM=12{J0M(βπ)J1(βπ)J2(βπ)[cos(ϕ2fw+mϕfw+2m+π4)+sin(ϕ2fw+mfw+mπ4)]
J0(βπ)M1J13(βπ)sin(ϕfw+2mfw+mϕfw+m+π4)}
(5)
EIM=12{J0M(βπ)J1(βπ)J2(βπ)[cos(ϕ2fw+mϕfw+2mπ4)+sin(ϕ2fw+mfw+m+π4)]
J0(βπ)M1J13(βπ)sin(ϕfw+2mfw+mϕfw+mπ4)}
(6)
Ψ=3cos(ϕ2fw+mfw+2mϕ2fw+m+ϕfw+2m)+2cos(ϕ2fw+mfw+2m
+ϕfw+2mfw+mϕfw+m)2cos(ϕ2fw+mϕfw+2m+ϕfw+2mfw+mϕfw+m)
(7)

where the frequency is changed to ϕfm=πLDλ 2 f 2 m/c due to dispersion [6

6. G. P. Agrawal, Nonlinear Fiber Optics. (Academic Press, San Diego, 2001).

] in the turbulence channel, λ is the LD wavelength, L is the communication distance, D is the dispersion parameter, and c is the speed of light. Since the frequencies (fw, fm) of signals are much higher than the difference (|fw-fm|) [7

7. Y. Palaskas and Y. Tsividis, “Power-area-DR-frequency-selectivity trade-offs in weakly nonlinear active filters,” in Proceedings of ISCAS, (Bagnkok, Thailand, 2003), pp. I-453-I-456.

], Y can be approximated as

Ψ53cos(2πLDλ2fw2c).
(8)

Next, the probability density function (pdf) of the turbulence channel coefficient δ can be modeled as [5

5. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 ( 2005). [CrossRef]

]

fδ(δ)=12πσk2δexp((ln(δ)μk)22σk2),δ>0
(9)

where δ=eK, µk and σk denote the mean and standard deviation of K, respectively. Here, the scintillation index is defined as SI=E[δ2]E2[δ]1, and the log-normal channel is characterized by a scintillation index less than 0.75 (i.e., weak turbulence) [5

5. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 ( 2005). [CrossRef]

]. If the scintillation index is close to 1 and/or the propagation length is long (i.e., strong turbulence), the pdf of δ becomes the exponential distribution [5

5. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 ( 2005). [CrossRef]

], such that

fδ(δ)=1δ¯exp(δδ¯),δ>0
(10)

where, δ̄ is E[δ].

3. Average BER analysis of FSO systems

In this section, we derive a closed form of the average BER by considering the turbulence channels and IM3. First, we define the SNDR as follows:

SNDR=PfwP2fw+mfw+2m+Pth+Pshot
δ2GPRFδ2HPRF2+4kTB+qA2δBforβπ1
(11)

where

G=(πLatt2A22Vπ)2,H=1128M12(π3Latt2A2Vπ3)2.Ψ,
(12)

k=1.38×10-23 J/K is the Boltzmann constant, q=1.6×10-19 C is the electron charge, Pth is the thermal noise power, Pshot is the shot noise power, T=300K is the absolute temperature, B is the effective noise bandwidth, and PRF=V 2 RF/2 is the input signal power. Using the above SNDR and turbulence channels, we then derive the average BER (Pb) as

Pb=0Q(SNDR)fδ(δ)dδ.
(13)

Using the change of variable x=(lnδ-µk)/√2σk and the Gauss-Hermite quadrature formula [8

8. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels. (Wiley, New York, 2000). [CrossRef]

], (13) can then be simplified as

Pb=1πi=1NwiQ(GPRFe2(2σkxi+μk)HPRF2e2(2σkxi+μk)+4kTB+qA2Be(2σkxi+μk))
(14)

where N is the order of approximation, xi, i=1,…,N are the zeros of the Nth-order Hermite polynormial and wi, i=1,…,N are weight factors for the Nth-order approximation; N=10 is used for the analysis [5

5. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 ( 2005). [CrossRef]

]. Finally, by employing the same process as for the log-normal channel, the average BER for the exponential channel can be given as

Pb=i=1NwixiQ(δ¯2GPRFxi4δ¯2HPRF3xi4+4kTB+qA2Bδ¯xi2).
(15)

4. Numerical results

Figure 2 illustrates the results of the average BER in both the log-normal and the exponential channels. The system parameters used for the analysis include the following: the wavelength (λ) is 1550 nm, the switch voltage (Vπ) is 2.5 V, the DD-MZM insertion loss (LDM) is 6 dB, the responsivity (ℜ) is 0.8 A/W, the communication distance (L) is 2 km, and the worst RF frequency (fw) is 25 GHz. Since SNDR is sensitive to the input signal power and the total number of users (M), as shown in (14), in Fig. 2(a) we present the average BER as a function of the input signal power according to the total number of users under the log-normal and the exponential channels. In Fig. 2(b), we show the relationship between the scintillation index and the average BER.

In Fig. 2(a), the numerical results also show that when the user number doubles, the input signal power decreases by almost 2 dBm under both turbulence channels at a given average BER. Additionally, for a given the input signal power of 20 dBm, it is shown that the difference of average BER corresponding to 8 users and 32 users under weak turbulence is almost 2.5 times larger than that under strong turbulence. Then, Fig. 2(b) shows that as the scintillation index increases from 0.25 to 0.75, the average BER decreases almost 4.1832 dB for 8 users at a signal power of 20 dBm; the numerical results for these conditions show that the difference of the average BER is almost 2.74 times larger than for 32 users at the signal power of 18 dBm under the log-normal channel.

5. Conclusions

In this paper, we investigated SNDR using a Bessel expansion by considering the effect of IM3 components. Also, we derived a closed-form average BER performance under atmospheric turbulence channels using log-normal and the exponential distributions based on the Gauss-Hermite quadrature formula. As a result, we could more easily predict average BER performance without requiring complicated calculations. In practical terms, when establishing FSO systems, we could construct an engineering table using this derived average BER formula according to the input signal power and the number of users. It is noteworthy that all the derived equations are reasonable only βπ≪1. Thus, when we establish FSO systems practically, we should carefully consider the desired environment.

Fig. 2. Average BER: (a) as a function of the input signal power under the log-normal channel (with SI=0.25) and the exponential channel (E[δ]=3) according to three sets of users (e.g., 8, 16, 32), and (b) as a function of the scintillation index under the log-normal channel according to three sets of users with an optimal input signal power.

Acknowledgment

This work was partially supported by the Center for Distributed Sensor Networks at the Gwangju Institute of Science and Technology (GIST), by the World Class University (WCU) program (R31-20008-000-10026-0), and by the Plant Technology Advancement Program (07SeaHeroB01-03) funded by the Ministry of Construction and Transportation, Korea.

References and links

1.

R. Olshansky, V. A. Lanzisera, and P. M. Hill, “Subcarrier multiplexed lightwave systems for broad-band distribution,” J. Lightwave Technol. 7, 1329–1342 ( 1989). [CrossRef]

2.

V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24, 4750–4762 ( 2006). [CrossRef]

3.

T. Cho and K. Kim, “Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals,” J. Lightwave Technol. 24, 2052–2058 ( 2006). [CrossRef]

4.

L. Besser and R. Gilmore, Practical RF Circuit Design For Modern Wireless Systems. (Artech House, Boston·London, 2003)

5.

K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53, 1455–1461 ( 2005). [CrossRef]

6.

G. P. Agrawal, Nonlinear Fiber Optics. (Academic Press, San Diego, 2001).

7.

Y. Palaskas and Y. Tsividis, “Power-area-DR-frequency-selectivity trade-offs in weakly nonlinear active filters,” in Proceedings of ISCAS, (Bagnkok, Thailand, 2003), pp. I-453-I-456.

8.

M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels. (Wiley, New York, 2000). [CrossRef]

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 5, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 22, 2009
Published: October 27, 2009

Citation
Wansu Lim, Tae-Sik Cho, Changho Yun, and Kiseon Kim, "Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels," Opt. Express 17, 20721-20726 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989). [CrossRef]
  2. V. W. S. Chan, "Free-space optical communications," J. Lightwave Technol. 24, 4750-4762 (2006). [CrossRef]
  3. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006). [CrossRef]
  4. L. Besser and R. Gilmore, Practical RF Circuit Design For Modern Wireless Systems, (Artech House, Boston • London, 2003)
  5. K. Kiasaleh, "Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence," IEEE Trans. Commun. 53, 1455-1461 (2005). [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).
  7. Y. Palaskas and Y. Tsividis, "Power-area-DR-frequency-selectivity trade-offs in weakly nonlinear active filters," in Proceedings of ISCAS, (Bagnkok, Thailand, 2003), pp. I-453-I-456.
  8. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, (Wiley, New York, 2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited