OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 21808–21812
« Show journal navigation

ZnO subwavelength wires for fast-response mid-infrared detection

Wei Dai, Qing Yang, Fuxing Gu, and Limin Tong  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 21808-21812 (2009)
http://dx.doi.org/10.1364/OE.17.021808


View Full Text Article

Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Room temperature operating thermal detection for mid-infrared light based on ZnO subwavelength wires has been demonstrated. Electric resistance in ZnO wires increases linearly with the intensity of incident light. Noise equivalent power (NEP) of 5.8 μW/Hz1/2 (at 1 kHz) with typical response times as fast as 1.3 ms is obtained at 10.6-μm wavelength. The sensitivity and response time of the detector are also found to be insensitive to the ambient.

© 2009 OSA

1. Introduction

Mid infrared (IR) detection, typically relying on thermal or photo response [1

1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 ( 2002). [CrossRef]

], has wide applications in the fields of medicine [2

2. M. Jackson, M. G. Sowa, and H. H. Mantsch, “Infrared spectroscopy: a new frontier in medicine,” Biophys. Chem. 68(1-3), 109–125 ( 1997). [CrossRef] [PubMed]

], remote sensing [3

3. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 ( 1996). [CrossRef]

], environmental monitoring [4

4. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 ( 2002). [CrossRef]

], and telecommunications [5

5. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3-5), 537–544 ( 2005). [CrossRef]

]. Generally, IR photon detectors, including photoconductors, quantum well photodetectors, quantum dots photodetectors and superconductor detectors [1

1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 ( 2002). [CrossRef]

,6

6. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 ( 1998). [CrossRef]

], offer advantages of fast response and high sensitivity, but usually require low-temperature operation with complex cooling equipments [3

3. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 ( 1996). [CrossRef]

]. Thermal detectors, such as thermocouple detectors and resistance thermal detectors, provide the possibility for room-temperate operation with broadband response, but usually suffer from slow response times due to relatively large thermal inertia of the sensitive elements [1

1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 ( 2002). [CrossRef]

,3

3. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 ( 1996). [CrossRef]

]. One way to speed up the response of a thermal detector is reducing the thermal inertia or equivalently the size of the sensitive element, through adopting air-bridge microstructure [7

7. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 ( 1984). [CrossRef]

]. Recently, low-dimensional micro- or nanostructures have attracted extensive attentions in optical detection [8

8. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. Rep. 47(1-2), 1–47 ( 2004). [CrossRef]

10

10. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 ( 2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-1-293. [CrossRef] [PubMed]

], among which zinc oxide (ZnO) micro- and nanowires show great commercial potential owing to their low cost and easy fabrication. So far most of the researches on ZnO nanowire detection are focused on UV photodetection [11

11. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 ( 2002). [CrossRef]

21

21. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Appl. Phys. Lett. 84(24), 5022–5024 ( 2004). [CrossRef]

]. Considering the relatively strong absorption in mid-IR regime (about 1 mm−1 from 8 to 30 μm) [22

22. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 ( 1998). [CrossRef]

] and the excellent chemical and thermal stabilities of ZnO microwire, here we propose mid-IR thermal detection based on ZnO subwavelength wires. In the work, we explore the photothermal response of ZnO subwavelength wires, and demonstrate a room-temperature-operation thermal detector with response time down to 1.3 ms at 10.6-μm wavelength.

2. Detector configuration

ZnO subwavelength wires were synthesized via a chemical vapor transport process [23

23. J. Wang, J. Sha, Q. Yang, X. Y. Ma, H. Zhang, J. Yu, and D. R. Yang, “Carbon-assisted synthesis of aligned ZnO nanowires,” Mater. Lett. 59(21), 2710–2714 ( 2005). [CrossRef]

]. Figure 1
Fig. 1 The SEM image of a 1.0-μm-diameter ZnO wire.
shows a scanning electron microscope (SEM) image of a typical ZnO microwire with 1.0-μm-diameter, smooth surface and hexagonal section. To assemble the detection structure, a ZnO wire, with diameter less than 3 μm, was first transferred to a grooved glass plate by micromanipulation. The wire was placed across two Ti/Au electrodes sputtered on the plate, as schematically illustrated in Fig. 2(a)
Fig. 2 The schematic structure (a) and SEM image of a ZnO wire on a grooved glass plate (b).
. To improve the electrical contact properties, a microdrop of In/Ga liquid alloy was used to cover the contact area to ensure an ohmic contact. The middle part of the wire was suspended above the groove (several hundred micrometers in width) to get isolation from the substrate. For reference, a typical as-fabricated detection structure, consisting of a 2.0-μm-diameter, 760-μm-length ZnO wire, is shown in Fig. 2(b).

Light from a Coherent K-250 CO2 laser, centered at the wavelength of 10.6 μm, was used to irradiate the ZnO wire. The laser beam was focused by a ZnSe lens (focus length = 5.0 cm) to a 220-μm-diameter spot on the ZnO wire. Since the dark resistance of the ZnO wire is very large, a constantly illumination from a halogen lamp (about 6800 lx) is applied on the ZnO wire for stable and reliable measurement of the response of the ZnO wire.

3. ZnO wire for mid-IR detection

When a ZnO wire absorbs mid-IR light, its temperature rises, leading to the change in the resistance that can be used to retrieve the intensity of the incident light. Figure 3
Fig. 3 I-V characteristics of a 2.9-μm-diameter, 520-μm-length ZnO wire as a function of 10.6-μm-wavelength light intensity.
shows some typical I-V characteristics of a 2.9-μm-diameter, 520-μm-length ZnO wire under irradiation of 10.6-μm-wavelength light at various intensities, for reference, the I-V curve of the ZnO wire without IR irradiation is provided. The linear shape of the curves in the range of −10 to 10 V reveals good ohmic contacts. The current decreases with the increase of irradiation power: as the light intensity increases to 22.8 mW, the current reduces by 38%. Supposing only the 226-μm-length irradiated part of ZnO wire elevating temperature, the resistance of this part increases by 144%.

Figure 4
Fig. 4 Resistance of a single 2.0-μm-diameter, 760-μm-length ZnO wire device measured as a function of irradiation intensity. Inset is the frequency-dependent resistance changes of the ZnO wire.
shows the irradiation-intensity-dependent resistance of a 2.0-μm-diameter, 760-μm-length ZnO wire. As can be seen, the resistance increases linearly with intensity of the irradiation. The inset image in Fig. 4 shows the repetition-frequency dependence of the resistance change of the ZnO wire to the incident pulses (500 pJ /pulse, 25 μs pulse width). The amplitude of the resistance changes decreases with the increasing repetition frequency. By means of frequency domain analysis [24

24. S. K. Mitra, Digital Signal Processing: A Computer Based Approach (McGraw-Hill, New York, 2001).

], we obtain the noise intensity of 700 μV/Hz1/2 (at 1kHz), which corresponds to a noise equivalent power (NEP) of 5.8 μW/Hz1/2.

Recent study shows that the response of ZnO nanowire for UV photodetection is significantly influenced by ambient [17

17. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H.-H. Wehmann, and A. Waag, “On the difficulties in characterizing ZnO nanowires,” Nanotechnology 19(36), 365707 ( 2008). [CrossRef] [PubMed]

]. To investigate the influence of ambient on ZnO wire for mid-IR detection, we measured resistance of a 2.0-μm-diameter, 760-μm-length ZnO wire (the same ZnO wire shown Fig. 4) in typical ambient gases including air, argon, nitrogen, and oxygen, with results shown in Fig. 5
Fig. 5 Response of a 2.0-μm-diameter, 760-μm-length ZnO wire to 10.6-μm-wavelength light irradiation measured in different atmospheres.
. The 10.6-μm-wavelength light was irradiated on the wire with a pulse period of 9 ms and a pulse width of 0.9 ms. Though the background resistance varies in different atmospheres, the amplitude and response time are insensitive to the ambient gases. The estimated response time of the ZnO wire mid-IR detection is about 1.3 ms when the resistance of ZnO wire falls from 37.2 to 34.5 MΩ in the air, which is much faster than other types of room-temperature-operated microbolometers or thermocouples [9

9. V. R. Mehta, S. Shet, N. M. Ravindra, A. T. Fiory, and M. P. Lepselter, “Silicon-integrated uncooled infrared detectors: perspectives on thin films and microstructures,” J. Electron. Mater. 34(5), 484–490 ( 2005). [CrossRef]

,25

25. H. Wang, X. Yi, G. Huang, J. Xiao, X. Li, and S. Chen, “IR microbolometer with self-supporting structure operating at room temperature,” Infrared Phys. Technol. 45(1), 53–57 ( 2004). [CrossRef]

31

31. J. Fonollosaa, M Carmona, J Santander, L Fonseca, M Moreno, and S. Marco, “Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques,” Sens. Actuator A149,65–73 ( 2009). [CrossRef]

], and three orders of magnitude faster than that in ZnO nanowire UV photodetectors [11

11. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 ( 2002). [CrossRef]

,14

14. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett. 86(12), 123117 ( 2005). [CrossRef]

,21

21. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Appl. Phys. Lett. 84(24), 5022–5024 ( 2004). [CrossRef]

].

In UV and mid-IR spectral ranges, ZnO wires have different response mechanisms. When mid-IR photon is absorbed by ZnO wires, the photon energy is converted to the thermal energy, heating up the ZnO wire. When temperature rises, thermal lattice vibration becomes stronger, leading to stronger scattering of carriers in ZnO wire, which is in turn, reduces the mean free paths of carriers, resulting in the increasing of the resistance. On the other hand, the temperature rising may excite electrons to the conduction band and increase the density of carriers, resulting in the decreasing of the resistance. However, at room temperature and above, with the halogen lamp illumination, electrons on the shallow doping levels have already been excited, and the free-carrier density is almost saturated. Therefore, heating of the ZnO wires would not increase the density of carriers obviously, and the resistance of the ZnO wire would increase when it is irradiated by mid-IR light.

As a kind of thermal detection, the response time of the ZnO wire detection can be theoretically estimated using the time constant [7

7. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 ( 1984). [CrossRef]

]
τ=H/G,
(1)
in which the heat capacity (of the irradiated part of ZnO wire) H is about 5.5 × 10−9 J/K, and the thermal conductivity G is about 5.0 × 10−6 W/K [32

32. R. A. Robie, H. T. Haselton Jr, and B. S. Hemingway, “Heat capacities and energies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite),” J. Chem. Thermodyn. 21(7), 743–749 ( 1989). [CrossRef]

,33

33. T. Olorunyulemi, A. Birnboim, Y. Carmel, O. C. Wilson, and I. K. Lloyd, “Thermal conductivity of zinc oxide: from green to sintered state,” J. Am. Ceram. Soc. 85, 1249–1253 ( 2002). [CrossRef]

]. Calculated τ is about 1.1 ms, which coincides well with the measured value of 1.3 ms.

4. Conclusion

In conclusion, we demonstrate fast thermal detection of mid-IR light based on ZnO wires. A NEP of 5.8 μW/Hz1/2 (at 1kHz) and a typical response time of 1.3 ms are obtained at 10.6-μm wavelength. The sensitivity and response time of the detector are found to be insensitive to the ambient. The low thermal inertia of ZnO wire allows the response time down to the order of millisecond. Although the light used in this work is a monochromatic 10.6-μm-wavelength laser, the fast and sensitive response of the ZnO wire can be extended to a wider mid-IR spectrum owning to the broadband absorption of ZnO in the mid-IR spectral range, and will be promising for fast-response mid-infrared detection.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 60706020) and the National Basic Research Program of China (Grant No. 2007CB307003).

References and links

1.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 ( 2002). [CrossRef]

2.

M. Jackson, M. G. Sowa, and H. H. Mantsch, “Infrared spectroscopy: a new frontier in medicine,” Biophys. Chem. 68(1-3), 109–125 ( 1997). [CrossRef] [PubMed]

3.

P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 ( 1996). [CrossRef]

4.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 ( 2002). [CrossRef]

5.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3-5), 537–544 ( 2005). [CrossRef]

6.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 ( 1998). [CrossRef]

7.

D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 ( 1984). [CrossRef]

8.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. Rep. 47(1-2), 1–47 ( 2004). [CrossRef]

9.

V. R. Mehta, S. Shet, N. M. Ravindra, A. T. Fiory, and M. P. Lepselter, “Silicon-integrated uncooled infrared detectors: perspectives on thin films and microstructures,” J. Electron. Mater. 34(5), 484–490 ( 2005). [CrossRef]

10.

S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 ( 2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-1-293. [CrossRef] [PubMed]

11.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 ( 2002). [CrossRef]

12.

J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO anowire-based UV photosensor,” Nanotechnology 17(10), 2567–2573 ( 2006). [CrossRef] [PubMed]

13.

S. Kumar, V. Gupta, and K. Sreenivas, “Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure,” Nanotechnology 16(8), 1167–1171 ( 2005). [CrossRef]

14.

Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett. 86(12), 123117 ( 2005). [CrossRef]

15.

Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton, “Electrical transport properties of single ZnO nanorods,” Appl. Phys. Lett. 85(11), 2002–2004 ( 2004). [CrossRef]

16.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 ( 2007). [CrossRef] [PubMed]

17.

E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H.-H. Wehmann, and A. Waag, “On the difficulties in characterizing ZnO nanowires,” Nanotechnology 19(36), 365707 ( 2008). [CrossRef] [PubMed]

18.

J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO nanowire transistors,” J. Phys. Chem. B 109(1), 9–14 ( 2005). [CrossRef] [PubMed]

19.

P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D. P. Yu, “Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires,” Nano Lett. 9(7), 2513–2518 ( 2009). [CrossRef] [PubMed]

20.

J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 ( 2006). [CrossRef]

21.

S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Appl. Phys. Lett. 84(24), 5022–5024 ( 2004). [CrossRef]

22.

V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 ( 1998). [CrossRef]

23.

J. Wang, J. Sha, Q. Yang, X. Y. Ma, H. Zhang, J. Yu, and D. R. Yang, “Carbon-assisted synthesis of aligned ZnO nanowires,” Mater. Lett. 59(21), 2710–2714 ( 2005). [CrossRef]

24.

S. K. Mitra, Digital Signal Processing: A Computer Based Approach (McGraw-Hill, New York, 2001).

25.

H. Wang, X. Yi, G. Huang, J. Xiao, X. Li, and S. Chen, “IR microbolometer with self-supporting structure operating at room temperature,” Infrared Phys. Technol. 45(1), 53–57 ( 2004). [CrossRef]

26.

M. Garcia, R. Ambrosio, A. Torres, and A. Kosarev, “IR bolometers based on amorphous silicon germanium alloys,” J. Non-Cryst. Solids 338-340, 744–748 ( 2004). [CrossRef]

27.

E. Iborra, M. Clement, L. V. Herrero, and J. Sangrador, “IR uncooled bolometers based on amorphous GexSi1-xOy on silicon micromachined structures,” J. Microelectromech. Syst. 11(4), 322–329 ( 2002). [CrossRef]

28.

P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75(4), 1134–1148 ( 2004). [CrossRef]

29.

K. Kim, J. Y. Park, Y. H. Han, H. K. Kang, H. J. Shin, S. Moon, and J. H. Park, “3D-feed horn antenna-coupled microbolometer,” Sens. Actuator. A110,196–205 ( 2004). [CrossRef]

30.

J. P. Ploteau, P. Glouannec, and H. Noel, “Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces,” Appl. Therm. Eng. 27(2-3), 674–681 ( 2007). [CrossRef]

31.

J. Fonollosaa, M Carmona, J Santander, L Fonseca, M Moreno, and S. Marco, “Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques,” Sens. Actuator A149,65–73 ( 2009). [CrossRef]

32.

R. A. Robie, H. T. Haselton Jr, and B. S. Hemingway, “Heat capacities and energies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite),” J. Chem. Thermodyn. 21(7), 743–749 ( 1989). [CrossRef]

33.

T. Olorunyulemi, A. Birnboim, Y. Carmel, O. C. Wilson, and I. K. Lloyd, “Thermal conductivity of zinc oxide: from green to sintered state,” J. Am. Ceram. Soc. 85, 1249–1253 ( 2002). [CrossRef]

OCIS Codes
(230.0040) Optical devices : Detectors
(230.3990) Optical devices : Micro-optical devices
(040.6808) Detectors : Thermal (uncooled) IR detectors, arrays and imaging

ToC Category:
Detectors

History
Original Manuscript: October 23, 2009
Revised Manuscript: November 6, 2009
Manuscript Accepted: November 6, 2009
Published: November 12, 2009

Citation
Wei Dai, Qing Yang, Fuxing Gu, and Limin Tong, "ZnO subwavelength wires for fast-response mid-infrared detection," Opt. Express 17, 21808-21812 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21808


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002). [CrossRef]
  2. M. Jackson, M. G. Sowa, and H. H. Mantsch, “Infrared spectroscopy: a new frontier in medicine,” Biophys. Chem. 68(1-3), 109–125 (1997). [CrossRef] [PubMed]
  3. P. G. Datskos, P. I. Oden, T. Thundat, E. A. Wachter, R. J. Warmack, and S. R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers,” Appl. Phys. Lett. 69(20), 2986–2988 (1996). [CrossRef]
  4. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  5. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Lasers Eng. 43(3-5), 537–544 (2005). [CrossRef]
  6. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998). [CrossRef]
  7. D. P. Neikirk, W. W. Lam, and D. B. Rutledge, “Far-infrared microbolometer detectors,” Int. J. Infrared Millim. Waves 5(3), 245–278 (1984). [CrossRef]
  8. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. Rep. 47(1-2), 1–47 (2004). [CrossRef]
  9. V. R. Mehta, S. Shet, N. M. Ravindra, A. T. Fiory, and M. P. Lepselter, “Silicon-integrated uncooled infrared detectors: perspectives on thin films and microstructures,” J. Electron. Mater. 34(5), 484–490 (2005). [CrossRef]
  10. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-1-293 . [CrossRef] [PubMed]
  11. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. 14(2), 158–160 (2002). [CrossRef]
  12. J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO anowire-based UV photosensor,” Nanotechnology 17(10), 2567–2573 (2006). [CrossRef] [PubMed]
  13. S. Kumar, V. Gupta, and K. Sreenivas, “Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure,” Nanotechnology 16(8), 1167–1171 (2005). [CrossRef]
  14. Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett. 86(12), 123117 (2005). [CrossRef]
  15. Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton, “Electrical transport properties of single ZnO nanorods,” Appl. Phys. Lett. 85(11), 2002–2004 (2004). [CrossRef]
  16. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  17. E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber, A. Gölzhäuser, H.-H. Wehmann, and A. Waag, “On the difficulties in characterizing ZnO nanowires,” Nanotechnology 19(36), 365707 (2008). [CrossRef] [PubMed]
  18. J. Goldberger, D. J. Sirbuly, M. Law, and P. D. Yang, “ZnO nanowire transistors,” J. Phys. Chem. B 109(1), 9–14 (2005). [CrossRef] [PubMed]
  19. P. J. Li, Z. M. Liao, X. Z. Zhang, X. J. Zhang, H. C. Zhu, J. Y. Gao, K. Laurent, Y. Leprince-Wang, N. Wang, and D. P. Yu, “Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires,” Nano Lett. 9(7), 2513–2518 (2009). [CrossRef] [PubMed]
  20. J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time,” Appl. Phys. Lett. 88(13), 133114 (2006). [CrossRef]
  21. S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, “Photoresponse of sol-gel-synthesized ZnO nanorods,” Appl. Phys. Lett. 84(24), 5022–5024 (2004). [CrossRef]
  22. V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide,” J. Appl. Phys. 83(10), 5447–5451 (1998). [CrossRef]
  23. J. Wang, J. Sha, Q. Yang, X. Y. Ma, H. Zhang, J. Yu, and D. R. Yang, “Carbon-assisted synthesis of aligned ZnO nanowires,” Mater. Lett. 59(21), 2710–2714 (2005). [CrossRef]
  24. S. K. Mitra, Digital Signal Processing: A Computer Based Approach (McGraw-Hill, New York, 2001).
  25. H. Wang, X. Yi, G. Huang, J. Xiao, X. Li, and S. Chen, “IR microbolometer with self-supporting structure operating at room temperature,” Infrared Phys. Technol. 45(1), 53–57 (2004). [CrossRef]
  26. M. Garcia, R. Ambrosio, A. Torres, and A. Kosarev, “IR bolometers based on amorphous silicon germanium alloys,” J. Non-Cryst. Solids 338-340, 744–748 (2004). [CrossRef]
  27. E. Iborra, M. Clement, L. V. Herrero, and J. Sangrador, “IR uncooled bolometers based on amorphous GexSi1-xOy on silicon micromachined structures,” J. Microelectromech. Syst. 11(4), 322–329 (2002). [CrossRef]
  28. P. G. Datskos, N. V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors,” Rev. Sci. Instrum. 75(4), 1134–1148 (2004). [CrossRef]
  29. K. Kim, J. Y. Park, Y. H. Han, H. K. Kang, H. J. Shin, S. Moon, and J. H. Park, “3D-feed horn antenna-coupled microbolometer,” Sens. Actuator. A 110,196–205 (2004). [CrossRef]
  30. J. P. Ploteau, P. Glouannec, and H. Noel, “Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces,” Appl. Therm. Eng. 27(2-3), 674–681 (2007). [CrossRef]
  31. J. Fonollosaa, M Carmona, J Santander, L Fonseca, M Moreno, and S. Marco, “Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques,” Sens. Actuator A 149,65–73 (2009). [CrossRef]
  32. R. A. Robie, H. T. Haselton, and B. S. Hemingway, “Heat capacities and energies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite),” J. Chem. Thermodyn. 21(7), 743–749 (1989). [CrossRef]
  33. T. Olorunyulemi, A. Birnboim, Y. Carmel, O. C. Wilson, and I. K. Lloyd, “Thermal conductivity of zinc oxide: from green to sintered state,” J. Am. Ceram. Soc. 85, 1249–1253 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited