OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 24 — Nov. 23, 2009
  • pp: 22171–22178
« Show journal navigation

Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash  »View Author Affiliations


Optics Express, Vol. 17, Issue 24, pp. 22171-22178 (2009)
http://dx.doi.org/10.1364/OE.17.022171


View Full Text Article

Acrobat PDF (907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optoelectronic-compatible heterostructures are fabricated from layered inorganic-organic multiple quantum wells (IO-MQW) of Cyclohexenyl ethyl ammonium lead iodide, (C6H9C2H4NH3)2PbI4 (CHPI). These hybrids possess strongly-resonant optical features, are thermally stable and compatible with hybrid photonics assembly. Room-temperature strong-coupling is observed when these hybrids are straightforwardly embedded in metal-air (M-A) and metal-metal (M-M) low-Q microcavities, due to the large oscillator strength of these IO-MQWs. The strength of the Rabi splitting is 130meV for M-A and 160meV for M-M cavities. These values are significantly higher than for J-aggregates in all-metal microcavities of similar length. These experimental results are in good agreement with transfer matrix simulations based on resonant excitons. Incorporating exciton-switching hybrids allows active control of the strong-coupling parameters by temperature, suggesting new device applications.

© 2009 OSA

1. Introduction

Here we fabricate large area heterostructures from a self-assembled hybrid quantum well, 2-(1-Cyclohexenyl) ethyl ammonium lead iodide, (C6H9C2H4NH3)2PbI4 (hereafter CHPI). We show the ability of these hybrids to generate the strong coupling regime even at room temperatures in low-Q factor microcavities. We further demonstrate the tunability in these strongly-coupled microcavities by using a similar hybrid, C12PI, which allows switchable excitons.

2. Experiment

Thin films and single crystals of 2-(1-Cyclohexenyl) ethyl ammonium lead iodide, (C6H9C2H4NH3)2PbI4 (CHPI) were prepared by both intercalation and chemical synthesis described previously [20

20. G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 ( 2009). [CrossRef]

, 22

22. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 ( 2009). [CrossRef]

]. Briefly, the chemical synthesis was carried out by taking stoichiometric amounts of PbI2 and 2-(1-cyclohexenyl) ethyl amine (C6H9C2H4NH2) [see 20

20. G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 ( 2009). [CrossRef]

]. The resulting orange precipitate was filtered, dried and used to harvest single crystals of dimensions 2x2x.0.5mm3 from methanolic solution by slow evaporation. X-Ray diffraction confirms the natural self assembly of layered films. Microcavities were fabricated as follows: firstly silver (48nm) is sputtered onto a clean glass substrate, followed by sputtering of a SiO2 layer (335nm) on top of the Ag. Subsequently PbI2 (~72nm) was coated onto this structure and subsequently processed to obtain CHPI through intercalation, as described earlier [22

22. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 ( 2009). [CrossRef]

]. This forms a metal-insulator-CHPI-air (M-A) microcavity. For metal-hybrid-metal (M-M) cavities, a layer of poly(methyl methacrylate) (PMMA) polymer (125nm) was spun on top of the CHPI and subsequently a partially-reflecting Ag mirror of thickness ~10nm was coated by thermal vapor deposition. Similar methods of synthesis and fabrication were followed for the C12PI-based microcavity. PL and transmission imaging/spectroscopy used a modified laser scanning confocal microscope fitted with a diode laser (447nm), white light source and a spectrometer.

3. Results and discussion

Having optimized the fabrication strategy for uniform thin CHPI films they are placed within low-Q microcavities. The first M-A cavity is designed as a 5λ/4 thick cavity, with Ag/SiO2 (R=86%) and CHPI/air as high and low reflecting ends [Fig. 3(A)
Fig. 3 (A) Metal-air microcavity. (B) Experimental angle-dependent transmission spectral image, solid circles are transmission dip minima. Transfer-matrix (red line) and two-level model (black dashed) also shown. (C-E) Transfer-matrix simulations of (C) angle-dependent transmission spectral image, (D) spatial map of optical intensity vs photon energy at 33° and (E) spatial map of optical intensity vs angle at energy 2.45eV
]. The SiO2 spacer thickness is adjusted so that the cavity mode is in resonance with the exciton state. Angle-resolved transmission spectra of the M-A cavity are recorded using TE-polarized white light [Fig. 3(B)]. The photonic mode at 2.3eV (540nm) of width ~0.12eV (~70nm) splits into two branches at the exciton transmission dip around 2.45eV (523nm), at an incident angle of 33°. To confirm this, full-transfer-matrix simulations [16

16. C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 ( 2005). [CrossRef]

], are performed using the experimentally-extracted optical constants (n and k) of CHPI from white-light ellipsometry, and the values reported in literature for Ag and SiO2 over the wide region of wavelengths, λ=300-800nm [Fig. 3(C)]. Both simulated and experimental transmission spectra clearly reveal characteristic anti-crossing transmission dips from strong-coupling of the excitonic and cavity modes forming two new branches, lower polariton (LP) and upper polariton (UP) branches. A spatial map of the optical intensity inside the microcavity as a function of incident angle clearly shows the resonant enhancement at 33° [Fig. 3(E)]. Similarly a spatial map of the intensity inside the microcavity at different incident energies shows the two polariton modes [Fig. 3(D)], which in this situation do not overlap strongly with the CHPI layer. Despite this, the vacuum Rabi splitting defined by the minimum energy separation between the LPB and UPB is 130meV. This anti-crossing is a clean signature of strong coupling between CHPI hybrid exciton and the cavity photonic mode.

Similar results are found for all-metallic (M-M) microcavities of optical length 7λ/4. Here an additional 125nm buffer layer of polymer (PMMA) is spin-coated on the M-A cavity, and a final deposition of 10nm Ag (R=35%) completes the microcavity [Fig. 4(A)
Fig. 4 (A) Schematic diagram of the M-M microcavity. (B) Experimental angle-dependent transmission spectral image. Solid circles are from experimental transmission dips. Solid (red) and dashed (black) lines are from transfer-matrix and two-level mode simulations respectively (see text). Transfer-matrix simulated (C) angle-dependent transmission spectral image, (D) spatial map of optical intensity vs energy at 51° and (E) spatial map of optical intensity vs angle at energy 2.45eV.
]. Once again angle-resolved transmission spectra, shown in Fig. 4(B), match the transfer matrix simulations in Fig. 4(C). The fitting parameters from two-level model for M-A cavity are Ec=2.15eV and neff=1.69. The spatial map of optical intensity vs energy at the anti-crossing angle (51°) and optical intensity vs angle at the CHPI exciton energy (2.45eV) are shown in Fig. 4 (D) and (E). The M-M cavity produces a more prominent anti-crossing, with a Rabi splitting of 160meV at an angle of 51° due to the greater field confinement. The penetration of the optical field in the CHPI in the present cavity results into comparatively higher neff than the open M-A cavity (neff=1.54). These Rabi splitting values of both M-A and M-M cavities are much larger than that of previously reported all-metallic organic (J-aggregate) microcavities [16

16. C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 ( 2005). [CrossRef]

,24

24. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 ( 2002). [CrossRef]

], and comparable to hybrid microcavities of similar cavity lengths [25

25. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 ( 2008). [CrossRef]

, 26

26. K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 ( 2001). [CrossRef]

].

The opportunities afforded by hybrid inorganic-organic quantum wells is exemplified by creating microcavities [Fig. 5
Fig. 5 (A) and (C) are experimental angle-dependent transmission spectral images of M-A cavity with C12PI excitons of aged (Phase I) and fresh (Phase II) cavities respectively (see text). Solid circles are from experimental transmission dips. Solid (red) and dashed (blue) lines are from transfer-matrix and two-level mode simulations respectively. (B) & (D) Transmission spectra of the M-A cavity of the Phase (I) and Phase (II) excitons respectively at the anti-crossing angles.
] in which the Rabi frequency can be switched in situ. We demonstrate this tunability in strong coupling by replacing the hybrid CHPI with a phase-changing hybrid known as C12PI [27

27. D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 ( 2008). [CrossRef]

], in M-A cavity of Fig. 3. This C12PI hybrid exhibits a clear shift in exciton energy (from 2.53eV to 2.44eV) when it undergoes a layer-‘crumpling’ structural phase transition from C12PI(I) to C12PI(II), due to temperature (Tc=60°C) and/or aging. These structural flips show completely reversible thermal hysteresis and also thickness dependent. Therefore, it is possible to switch the optical features between these two phases by controlling the thickness and/or the temperature. Also, this phase transformation can be prevented by annealing the films at 60°C for an hour or by overcoating the film with a protective layer such as polymer. While a detailed discussion of this rapid Peierls-switching and the resulting exciton response will be published elsewhere [28

28. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells”, Communicated (2009).

], the digital flip of exciton energy provides a reversible way to control microcavities. Angle-dependent transmission spectra [Fig. 5(C)] of a freshly-deposited C12PI (II) M-A cavity is seen to flip when transformed to C12PI(I) [Fig. 5(A)], in this case by ageing for 1 day, under ambient conditions. While strong-coupling in the C12PI(I) M-A cavity gives a Rabi splitting of 180meV at 42° [Fig. 5(B)], the C12PI(II) cavity exhibits increased Rabi splitting of 202meV at 32° [Fig. 5(D)]. Hence both the strong-coupling angle and coupling rate vary by flipping the constituent phase. These PbI4 (sheet-crumpling) phase changes of C12PI are controllable and completely reversible. Therefore our experiments demonstrate the general ability of inorganic-organic hybrids even in low Q cavities for strong coupling.

4. Conclusions

Here we fabricated and studied layered perovskite inorganic-organic multiple quantum well heterostructures of CHPI. These narrow-exciton-linewidth hybrids show little Stokes shift between emission and absorption peaks, and are thus highly suited for strong-coupling applications. Incorporating such hybrid thin films in M-A and M-M low-Q cavities provides clear room-temperature strong coupling phenomena. The Rabi splitting is found to be ~130meV for M-A and ~160meV for M-M low-Q microcavities respectively, with controllable in situ switching between 180meV and 202meV in comparable C12PI microcavities. Strong coupling of these IO-MQWs paves the way for new device applications, particularly optimal for polariton laser experiments, since these films are more robust in nonlinear experiments than comparable organics. Further, these hybrids are of significance in fabricating robust optoelectronic devices.

Acknowledgements

Authors are thankful to Department of Science & Technology (DST), India for the financial support. This work is part of UK-India Education Research Initiative (UKIERI), and part funded by EPSRC grant EP/C511786/1.

References and links

1.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 ( 2007). [CrossRef]

2.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 ( 2009). [CrossRef]

3.

M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 ( 2007). [CrossRef]

4.

P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 ( 1997). [CrossRef]

5.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 ( 1998). [CrossRef]

6.

R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 ( 2000). [CrossRef]

7.

C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 ( 1992). [CrossRef] [PubMed]

8.

D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 ( 1998). [CrossRef]

9.

P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 ( 2000). [CrossRef] [PubMed]

10.

M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 ( 2009). [CrossRef]

11.

S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 ( 2007). [CrossRef] [PubMed]

12.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 ( 2004). [CrossRef] [PubMed]

13.

P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 ( 2003). [CrossRef] [PubMed]

14.

D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 ( 2002). [CrossRef]

15.

S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 ( 2008). [CrossRef] [PubMed]

16.

C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 ( 2005). [CrossRef]

17.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 ( 1994). [CrossRef]

18.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 ( 1999). [CrossRef] [PubMed]

19.

T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 ( 1999). [CrossRef]

20.

G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 ( 2009). [CrossRef]

21.

S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 ( 2009). [CrossRef]

22.

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 ( 2009). [CrossRef]

23.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 ( 1990). [CrossRef]

24.

P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 ( 2002). [CrossRef]

25.

G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 ( 2008). [CrossRef]

26.

K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 ( 2001). [CrossRef]

27.

D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 ( 2008). [CrossRef]

28.

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells”, Communicated (2009).

OCIS Codes
(160.4670) Materials : Optical materials
(250.5230) Optoelectronics : Photoluminescence
(310.3840) Thin films : Materials and process characterization
(140.3948) Lasers and laser optics : Microcavity devices
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Optoelectronics

History
Original Manuscript: August 19, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 27, 2009
Published: November 19, 2009

Citation
K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, "Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity," Opt. Express 17, 22171-22178 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-22171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  2. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Rare-Earth Spontaneous Emission Control in Three-Dimensional Lithium Niobate Photonic Crystals,” Adv. Mater. 21(34), 3526 (2009). [CrossRef]
  3. M. Li, A. Xia, J. Wang, Y. Song, and L. Jiang, “Coherent control of spontaneous emission by photonic crystals,” Chem. Phys. Lett. 444(4-6), 287–291 (2007). [CrossRef]
  4. P. V. Kelkar, V. G. Kozlov, A. V. Nurmikko, C. C. Chu, J. Han, and R. L. Gunshor, “Stimulated emission, gain, and coherent oscillations in II-VI semiconductor microcavities,” Phys. Rev. B 56(12), 7564–7573 (1997). [CrossRef]
  5. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998). [CrossRef]
  6. R. B. Fletcher, D. G. Lidzey, D. D. C. Bradley, M. Bernius, and S. Walker, “Spectral properties of resonant-cavity, polyfluorene light-emitting diodes,” Appl. Phys. Lett. 77(9), 1262 (2000). [CrossRef]
  7. C. Weisbuch, M. Nishioka, A. Ashikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  8. D. G. Lidzey, D. D. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998). [CrossRef]
  9. P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, “Angle-Resonant Stimulated Polariton Amplifier,” Phys. Rev. Lett. 84(7), 1547–1550 (2000). [CrossRef] [PubMed]
  10. M. Vladimirova, S. Cronenberger, D. Scalbert, M. Nawrocki, A. V. Kavokin, A. Miard, A. Lemaître, and J. Bloch, “Polarization controlled nonlinear transmission of light through semiconductor microcavities,” Phys. Rev. B 79(11), 115325 (2009). [CrossRef]
  11. S. Christopoulos, G. B. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]
  12. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004). [CrossRef] [PubMed]
  13. P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E. Cohen, and L. N. Pfeiffer, “Electron-Polariton Scattering in Semiconductor Microcavities,” Phys. Rev. Lett. 90(20), 206401 (2003). [CrossRef] [PubMed]
  14. D. G. Lidzey, A. M. Fox, M. D. Rahn, M. S. Skolnick, and S. Walker, “Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation,” Phys. Rev. B 65(19), 195312 (2002). [CrossRef]
  15. S. Kéna-Cohen, M. Davanço, and S. R. Forrest, “Strong Exciton-Photon Coupling in an Organic Single Crystal Microcavity,” Phys. Rev. Lett. 101(11), 116401 (2008). [CrossRef] [PubMed]
  16. C. E. Finlayson, G. V. Prakash, and J. J. Baumberg, “Strong exciton-photon coupling in a length tunable optical microcavity with J-aggregate dye heterostructures,” Appl. Phys. Lett. 86(4), 041110 (2005). [CrossRef]
  17. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic–Inorganic Heterostructure Electroluminescent Device Using a Layered Perovskite Semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676 (1994). [CrossRef]
  18. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors,” Science 286(5441), 945–947 (1999). [CrossRef] [PubMed]
  19. T. Dantas de Morais, F. Chaput, K. Lahlil, and J. P. Boilot, “Hybrid Organic–Inorganic Light-Emitting Diodes,” Adv. Mater. 11(2), 107–112 (1999). [CrossRef]
  20. G. V. Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, J. Phys: D App. Phys. 42, 185405 (2009). [CrossRef]
  21. S. Zhang, G. Lanty, J.-S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic–inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009). [CrossRef]
  22. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett. 95(3), 033309–033311 (2009). [CrossRef]
  23. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (C_nH_2n+1NH_3)_2PbI_4,” Phys. Rev. B 42(17), 11099–11107 (1990). [CrossRef]
  24. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton–photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81(19), 3519 (2002). [CrossRef]
  25. G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008). [CrossRef]
  26. K. Sumioka, H. Nagahama, and T. Tsutsui, “Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic–inorganic layered perovskite,” Appl. Phys. Lett. 78(10), 1328–1330 (2001). [CrossRef]
  27. D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18),” N. J. Chem. 32(10), 1736–1746 (2008). [CrossRef]
  28. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Exciton Switching and Peierls Transitions in Hybrid Inorganic-Organic Self-Assembled Quantum Wells,” Communicated (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited