OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 25 — Dec. 7, 2009
  • pp: 22871–22878
« Show journal navigation

Ultra-rapid dispersion measurement in optical fibers

Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber  »View Author Affiliations


Optics Express, Vol. 17, Issue 25, pp. 22871-22878 (2009)
http://dx.doi.org/10.1364/OE.17.022871


View Full Text Article

Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method to measure the chromatic dispersion of fibers with lengths of several kilometers. The technique is based on a rapidly swept Fourier domain mode locked laser driven at 50kHz repetition rate. Amplitude modulation with 400MHz and phase analysis yield the dispersion values over a 130nm continuous wavelength tuning range covering C and L band. The high acquisition speed of 10µs for individual wavelength-resolved traces Δt(λ) can reduce effects caused by thermal drift and acoustic vibrations. It enables real-time monitoring with update rates >100Hz even when averaging several hundred acquisitions for improved accuracy.

© 2009 OSA

1. Introduction

While for short fiber lengths up to several meters, dispersion is usually measured using interferometric methods [9

9. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981). [CrossRef]

, 10

10. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 ( 2006). [CrossRef] [PubMed]

], a number of different dispersion measurement techniques have been developed for long fibers in the km range. These include a variety of time-of-flight as well as phase shift methods [11

11. A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991). [CrossRef]

16

16. B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993). [CrossRef]

] which measure the timing deviation at several distinct wavelengths step-by-step or provide continuous tuning merely over a GHz range [17

17. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989). [CrossRef]

]. In contrast, the time-of-flight method [18

18. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 ( 2007). [CrossRef]

] acquires a whole dispersion trace Δt(λ) at a time using comb-shaped supercontinuum pulses but it is limited to monotonic spectral behavior and hence cannot measure near the zero dispersion wavelength. However, most telecom and FDML laser applications require the use of small dispersion values around a dispersion zero. Ref [19

19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005). [CrossRef]

]. presents an approach for km long fibers using a phase modulator in a Sagnac interferometer. This “rapid, cost-effective measurement” takes less than 30s to measure the dispersion over a wavelength range of 185nm centered around 1530nm and is especially interesting because of its overall cost efficiency. In this Letter, we present a novel dispersion measurement technique which is more than 3 orders of magnitude faster than the approach described in [19

19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005). [CrossRef]

]: We measure over a continuous tuning range of more than 130nm (including C and L band) in typically 10µs, resulting in an update rate of ~200Hz when several hundred wavelength sweeps are averaged for improved accuracy. This ultra-rapid dispersion measurement technique can measure across zero dispersion without difficulty and is, depending on the desired accuracy, ideally suited for fiber spans >~1km which may include optical amplifiers like semiconductor optical amplifiers (SOAs). The high acquisition speed makes the method robust against changes in fiber length, similar to the method shown in [20

20. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987). [CrossRef]

], so that the impact of thermal drift and acoustic vibrations is suppressed.

2. Ultra-Rapid dispersion measurement method

2.1. Experimental setup

We present a new chromatic dispersion measurement technique based on an FDML rapidly wavelength-swept laser which measures 50,000 complete wavelength-resolved dispersion traces Δt(λ) per second over a range of more than 130nm. Individual measurements are averaged for improved accuracy.

Figure 1
Fig. 1 Ultra-rapid dispersion measurement setup consisting of an FDML laser (left) and the dispersion measurement part (right).
shows the setup for ultra-rapid dispersion measurement, including the FDML laser. The laser is operated at a center wavelength of ~1550nm and a total sweep range of ~150nm. The cavity of the laser consists of ~3.6km standard single mode fiber (SMF, OFS AllWave ZWP) resulting in a sweep repetition rate of f FDML~56kHz. A Fabry-Perot tunable filter (FFP-TF, LambdaQuest LLC) is driven by one channel of an arbitrary waveform generator (AWG, TTi TGA12104) synchronously to the optical roundtrip time. A semiconductor optical amplifier (SOA, Covega) is used as gain medium, the current from the laser diode controller (LDC; WL-LDC10D, wieserlabs.com) can be arbitrarily modulated by the phase locked second channel of the AWG. This way, the SOA is switched off during the backward sweep (long to short wavelength), so that only the forward sweep (short to long wavelength) remains [21

21. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 ( 2008). [CrossRef] [PubMed]

]. Two isolators (ISO) in the ring ensure uni-directional lasing. Polarization controllers (PC) are used to optimize the gain in the SOA. 70% of the light is extracted from the cavity by a fused fiber coupler (70/30), providing an average FDML laser output power of 13mW. 5% of that light is fed into an optical spectrum analyzer (OSA, Yokogawa AQ6370), the other 95% pass a λ/2 waveplate to adjust polarization, followed by a LiNbO3 electro-optic modulator (EOM; Lucent 2623na). After the EOM, the light is coupled into a 1GHz photo diode (PD, WL-PD1GA, wieserlabs.com). The fiber under test is inserted with fiber connectors between the EOM and the PD. The EOM is used to modulate the transmitted light intensity at a frequency of 440MHz which is detected by the PD and sampled with a real time oscilloscope (Osci, Tektronix DPO7104) set to 16x averaging, 500MHz bandwidth and a sampling rate of 5GS/s. The oscilloscope is triggered from the sync output of the AWG each time an FDML sweep starts so that a fixed relationship between time and wavelength is obtained. In order to benefit from averaging in the oscilloscope, the modulated intensity waveform at ~440MHz has to be phase-locked to the wavelength sweeps as well. This is accomplished via a home-built phase-locked loop (PLL) which multiplies the incoming 56kHz roundtrip frequency by a factor of n PLL=7900. The PLL output is fed into a power amplifier (PA; Mini-Circuits ZHL-6A) followed by a 3dB attenuator to drive the EOM.

2.2 Spectrally resolved propagation time measurement

The ultra-rapid dispersion measurement method directly measures the difference in propagation time for different wavelength components by observing the FDML sweep compression or stretching within the fiber. This is done by modulating the intensity of the FDML wavelength sweep with a sinusoidal 440MHz radio frequency (RF) signal as described above. After acquisition in the oscilloscope, the accumulated RF phase is computed both, for the reference signal, i.e. the signal without the test fiber, and the measurement signal, i.e. the signal with the test fiber inserted. To extract the phase ϕ over time, a fast Hilbert transform H and successive phase unwrapping is used:
ϕ(t)=unwrap[arctan(H(U(t))U(t))],
where U(t) is the sampled signal. ϕ(t) of the reference signal (without fiber under test) defines a relationship between phase and time which is linear in good approximation since the 440MHz signal has constant frequency. With the test fiber inserted, ϕ(t) becomes slightly nonlinear due to dispersion.

For light at a wavelength λ, the propagation time difference with and without the fiber under test can be calculated in the following way: First, λ is mapped to a sample time t(λ) of the reference signal via a wavelength calibration described below. At this time t(λ), the reference phase value of the Hilbert transform ϕref(t(λ)) is directly evaluated via interpolation between nearest samples. Now, the time t’(λ) at the same phase value of the Hilbert transform in the measurement signal is found via interpolation: t'(λ)=ϕfiber1[ϕref(t(λ))]. The time difference Δt(λ)=t’(λ)-t(λ) is the propagation time difference of the spectral component λ through the fiber under test plus a constant offset which is irrelevant for dispersion measurements.

Δt(λ)=ϕfiber1[ϕref(t(λ))]t(λ)+const.

2.3. Wavelength calibration

A wavelength calibration step is required to map time to wavelength. To achieve high accuracy, we chose to obtain the wavelength calibration data by modulating the intensity of the laser with the AWG by modulating the diode current of the laser. We drive the SOA with a comb of 20 spikes per sweep instead of the rectangular waveform. Due to the laser driver’s high analog bandwidth in the MHz range, we can achieve 70ns full width at half maximum (FWHM) peak width of the SOA current resulting in an even smaller optical pulse FWHM. These spikes are visible in the OSA and in the oscilloscope with excellent signal-to-noise ratio and show a precise correlation between time and wavelength (see Fig. 2
Fig. 2 Left: Spectrum of the FDML laser measured with the OSA: (A) full bidirectional FDML operation, (B) after SOA current modulation to suppress the backward sweep, (C) during wavelength calibration. Right: Relationship between oscilloscope samples and wavelength.
). After setting suitable noise threshold levels and the sweep direction, the calibration works fully automatic by acquiring one OSA trace and an averaged oscilloscope trace. The acquisition software detects all peaks with a center-of-gravity measurement and performs a third order spline interpolation to obtain λ(t). For future low cost systems, a series of several FBGs or the application of a gas vapour absorption cell for calibration could be envisioned. This wavelength calibration is acquired once before the actual dispersion measurement without test fiber inserted and takes a few seconds, limited by the sweep duration of the OSA.

An alternative approach using the EOM to modulate features onto the spectrum and measure those with the oscilloscope and the OSA was dismissed due to poor signal-to-noise ratio in the OSA, making automatic peak detection over the whole sweep range difficult.

Although this method could theoretically provide better wavelength resolution, we found that the LDC modulation method is sufficient for the presented system since in our case, the wavelength accuracy is mainly limited by a slow center wavelength drift of the FDML laser.

3. Results

3.1. Chromatic dispersion measurements: Error estimation by comparison to literature values

For the actual dispersion measurement, the oscilloscope is operated at 5GS/s sampling rate, yielding about 5×104 samples per FDML sweep. The sampled data is decimated (with averaging of neighboring points) by a factor of 16 to 64 so that a wavelength resolution of ~0.1nm/sample is obtained. To reduce temporal jitter, 16 wavelength sweeps were averaged inside the oscilloscope, yielding a theoretical update rate of ~3kHz. Due to limitations, mainly in the data transmission between oscilloscope and computer, as well as inefficient numerical data analysis, our setup was only able to update the wavelength-resolved dispersion measurement with ~1Hz. For the measurements shown here, 16 oscilloscope acquisitions were averaged in the computer resulting in a theoretical update rate of ~200Hz.

Figue 3
Fig. 3 Left: Dispersion measurements for various fibers acquired with the ultra-rapid method, average of 256 FDML wavelength sweeps (lines). The measurements include dispersion shifted fiber (DSF, Fujikura FutureGuide-DS), dispersion compensation fiber (DCF), Raman fiber (both from OFS), and different lengths of standard SMF. The SMF measurements were shifted by −50ps and −100ps to be distinguishable. Discrete data points + and × acquired with the “pulse method” (see text). Right: Baseline measurement without any fiber inserted, 256 sweeps averaged.
(left) shows propagation time difference graphs Δt(λ) obtained with the presented ultra-rapid dispersion measurement method for different fibers. Each trace consists of >2000 samples (decimation factor 16). One of the analyzed fibers, Corning SMF 28, is specified with a zero dispersion wavelength (ZDW) λ 0 of 1302nm to 1322nm and a zero dispersion slope S0≤0.092ps/nm2/km with a typical value of 0.087ps/nm2/km. Using the equation
D(λ)=S04(λλ04λ3)
the theoretically expected dispersion D and dispersion slope D’ at 1550nm can be calculated. Assuming the most typical values, λ 0=1310nm and S 0=0.087ps/nm2/km, the expected dispersion values at the center of the measurement range are D(1550nm)=16.512ps/nm/km and D’(1550nm)=0.0550ps/nm2/km. To test the reproducibility and to obtain a statistic on the error of the system, we performed five different measurements with the 50km fiber on two different days and with new wavelength-calibration (see section 3.3). These five independent measurements resulted in D(1550nm)=16.508±0.005ps/nm/km which is in very good agreement with the manufacturer specifications. Measurements of the 4km and 1km fibers resulted in 16.51±0.01ps/nm/km (7 independent measurements). The dispersion slope D’(1550) was measured to be 0.059±0.001ps/nm2/km (13 measurements with fiber lengths 1km to 50km) which is slightly above the typical value but still in agreement with the specification of S 0≤0.092ps/nm2/km.

The values also agree with those presented in earlier publications [22

22. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 ( 2000). [CrossRef] [PubMed]

]: reported 16.58ps/nm/km for 1km and 16.25ps/nm/km for 3km fiber measured with the Sagnac interferometer method and 16.65ps/nm/km obtained via the phase shift method from [15

15. A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979). [CrossRef] [PubMed]

].

3.2. Chromatic dispersion measurements: Error estimation by comparison to values using an independent method with the same fiber samples

For this verification, the results obtained with the presented ultra-rapid dispersion measurement technique have been compared to direct measurements of the signal propagation time for different wavelengths. This technique is much slower, but it serves as a reference to identify potential systematic errors. A self-developed pulse generator triggered from the AWG and directly attached to the EOM (replacing PLL and PA in Fig. 1) generates an optical pulse of <1ns length. The wavelength of this pulse is chosen by adjusting the pulse generator trigger time relative to the FDML sweep start. After the EOM, the signal is split in a 50/50 fused coupler and fed into the OSA for wavelength measurement and the photodiode for time measurement. The PD signal is acquired at 10GS/s (interpolated time) and averaged 64 times in the oscilloscope. The time of flight is measured by fitting a Gaussian curve into the intensity peak and averaging the peak position over a couple of acquisitions. The direct measurement of propagation time for different wavelengths is much slower and suffers from poor signal to noise ratio in the OSA due to the short duty cycle of <10−4. However, it provides direct access to optical signal propagation time for comparison and to identify potential systematic errors in the ultra-rapid dispersion measurement setup.

Several comparative measurements using this “pulse method” were obtained for 6km DSF and for 4km SMF. Each time, roughly a dozen different wavelengths were selected and directly measured in the OSA using center-of-gravity peak detection above a manually chosen threshold. At the same time, the signal propagation time was measured in the oscilloscope. These measurements are shown as data points in Fig. 3 (left) and are in very good agreement with the results of the presented “ultra-rapid dispersion method”. After taking several successive pulse measurements, we found that the discrepancy between these pulse measurements is as high as the discrepancy between the “pulse method” and the “ultra-rapid method”: In case of 4km SMF, the RMS deviation is about 15ps, in case of 6km DSF only 3ps. The smaller error in the DSF case shows that the uncertainty originates from the residual errors in the wavelength measurement and not from the time measurement. Due to more than 10 times higher dispersion D of the SMF compared to the DSF, errors during the wavelength measurement contribute much more to the overall discrepancy in the SMF case. This finding should be underlined insofar, as many dispersion measurement techniques are limited by the timing (or phase) measurement error and therefore they have a smaller relative error for very long fibers with high dispersion. The ultra-rapid dispersion measurement setup presented here exhibits an error characteristic which is not as strongly dependent on the total dispersion. It can be applied for a wider range of dispersion values with similar (relative) accuracy.

3.3. Chromatic dispersion measurements: Error values for different fiber lengths and different amounts of fiber dispersion

We estimated the maximum achievable accuracy, i.e. the minimum baseline noise (Fig. 3), of the demonstrated setup by successively increasing the number of averaged traces. Even for substantially more than 256 traces, the error converged to roughly ~0.5ps, depending on various parameters like applied power, relative intensity noise of the FDML laser etc. This value of time accuracy translates to a minimum length of ~50m of SMF, if the GVD should be measured with 1% accuracy. This theoretical accuracy can be achieved at ~100Hz. The fiber under test should be long enough to generate an amount of dispersion such that the propagation time difference is sufficiently higher than the baseline noise.

Hence, in most practical cases, the presented technique will be ideally suited for medium to very long lengths of fiber, where classical interferometric detection becomes difficult to implement and where sufficient propagation time difference accumulates. Typically this would be from ~1km to >50km.

Comparing these results to literature values, it can be seen that the ratio of accuracy per measurement time is orders of magnitude better than comparable techniques. On the one hand, this potentially results in improved accuracy, if many of these measurements are averaged. On the other hand, the fast acquisition speed of the ultra-rapid dispersion measurement technique minimizes errors due to thermal fluctuations and other slowly varying error sources allowing true real-time monitoring of fiber dispersion. The method could potentially be improved by use of a higher modulation frequency for increased phase accuracy and by use of a polarizing beam splitter and a Faraday rotation mirror as in [19

19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005). [CrossRef]

] to effectively double the fiber length. The application of an FDML laser with stabilized center wavelength may further increase the accuracy.

4. Conclusion

In conclusion we presented a novel setup to measure chromatic dispersion of long fibers over a wide and continuous wavelength range. A thorough analysis and estimation of the error is provided by comparison of the measurement results to literature values and by comparing the method to measurements with an independent and different technique using the same fiber samples. We show that, compared to other techniques described in literature, the measurement time of the ultra-rapid dispersion measurement setup is orders of magnitude faster at comparable or even improved accuracy. The high measurement speed makes the method robust against thermal fiber length drift. The technique can potentially be applied anywhere, where high speed dispersion measurement is desired, like in process control of fiber production, real-time monitoring of optical networks, trimming and fine tuning of dispersion compensation modules and dispersion critical optical setups etc. The method can measure through fiber amplifiers (SOAs) and operates both on highly dispersive fibers like DCF as well as near zero dispersion. Since individual traces are acquired at a rate of 50kHz, the measurement update rate can easily be increased beyond the presented 200Hz by sacrificing the resulting accuracy.

References and links

1.

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 ( 2006). [CrossRef] [PubMed]

2.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 ( 2009). [CrossRef] [PubMed]

3.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008). [CrossRef] [PubMed]

4.

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007). [CrossRef] [PubMed]

5.

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 ( 2007). [CrossRef] [PubMed]

6.

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 ( 2008). [PubMed]

7.

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007). [CrossRef] [PubMed]

8.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007). [CrossRef]

9.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981). [CrossRef]

10.

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 ( 2006). [CrossRef] [PubMed]

11.

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991). [CrossRef]

12.

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 ( 1985). [CrossRef]

13.

L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 ( 1977). [CrossRef] [PubMed]

14.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980). [CrossRef]

15.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979). [CrossRef] [PubMed]

16.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993). [CrossRef]

17.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989). [CrossRef]

18.

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 ( 2007). [CrossRef]

19.

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005). [CrossRef]

20.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987). [CrossRef]

21.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 ( 2008). [CrossRef] [PubMed]

22.

K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 ( 2000). [CrossRef] [PubMed]

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4510) Fiber optics and optical communications : Optical communications
(140.3600) Lasers and laser optics : Lasers, tunable
(260.2030) Physical optics : Dispersion
(350.4800) Other areas of optics : Optical standards and testing
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 13, 2009
Revised Manuscript: November 18, 2009
Manuscript Accepted: November 19, 2009
Published: November 30, 2009

Citation
Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christoph M. Eigenwillig, and Robert Huber, "Ultra-rapid dispersion measurement 
in optical fibers," Opt. Express 17, 22871-22878 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-22871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  2. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  3. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008). [CrossRef] [PubMed]
  4. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007). [CrossRef] [PubMed]
  5. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007). [CrossRef] [PubMed]
  6. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008). [PubMed]
  7. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007). [CrossRef] [PubMed]
  8. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007). [CrossRef]
  9. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981). [CrossRef]
  10. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006). [CrossRef] [PubMed]
  11. A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991). [CrossRef]
  12. L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985). [CrossRef]
  13. L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977). [CrossRef] [PubMed]
  14. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980). [CrossRef]
  15. A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979). [CrossRef] [PubMed]
  16. B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993). [CrossRef]
  17. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989). [CrossRef]
  18. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007). [CrossRef]
  19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005). [CrossRef]
  20. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987). [CrossRef]
  21. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008). [CrossRef] [PubMed]
  22. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited