OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24349–24357
« Show journal navigation

Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity

Ping Bai, Ming-Xia Gu, Xing-Chang Wei, and Er-Ping Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24349-24357 (2009)
http://dx.doi.org/10.1364/OE.17.024349


View Full Text Article

Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel structure is proposed to electrically detect the plasmonic waves from a subwavelength plasmonic waveguide. By locating two L-shaped metallic nanorods in close proximity of each other at the end of the plasmonic waveguide, a metal-semiconductor-metal plasmonic detector is constructed. The L-shaped nanorods also form a dipole nanoantenna and a nanocavity to focus the photonic power into the active volume of the detector. The dimensions and locations of the L-shaped nanorods are studied to maximize the transmission efficiency of the photonic power from the plasmonic waveguide to the detector. Impedance matching with a sub is investigated to further improve the power transmission. Possible leads of the detector are discussed and their effects are investigated. Proposed detector has an ultra-compact and easy-to-fabricate planar structure, and a potentially THz speed, high responsivity as well as low power dissipation.

© 2009 OSA

Traditional photodetectors are large in dimensions since they generally have low responsivity per unit volume [21

21. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]

]. Localized surface plasmon polaritons, which are associated with the oscillations of the conduction electrons of metallic nanoparticles, have been used to concentrate light into a subwavelength volume [22

22. A. Aiu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]

25

25. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]

], consequently making it possible to construct a photodetector in a subwavelength scale [18

18. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [CrossRef] [PubMed]

,19

19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]

]. Recently, a nanoscale plasmonic detector has been successfully integrated with a metal–insulator–metal plasmonic waveguide to detect the surface plasmon polaritons [20

20. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]

]. However, there is still a far way to apply the plasmonic detector to modern electronic circuits. The grant challenges are faced when attempting to detect the plasmonic waves propagating along a metallic waveguide. Firstly, the plasmonic waves are generally very weak at the open end of the waveguide because of high losses in the metallic waveguides [3

3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

]. Secondly, a strong reflection may exist at the interface between the plasmonic waveguide and the detector, owing to a large contrast between the permittivities of the media forming the waveguide and the detector. Thirdly, plasmonic waves decay rapidly when they move away from the metallic waveguide into the surrounding dielectric medium. Only a small fraction of the plasmonic energy can reach the active region of a butt-connected plasmonic detector. Consequently, the efficient coupling of the optical energy between the plasmonic waveguide and the nanoscale detector becomes a critical issue in the design of a plasmonic detector.

A dipole nanoantenna, formed by placing two nanoparticles in close proximity of each other, can significantly enhance the field strength in the gap [22

22. A. Aiu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]

28

28. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]

]. Paper [29

29. M. X. Gu, P. Bai, and E. P. Li, “Enhancing the reception of propagating surface plasmons using a nanoantenna,” IEEE Photon. Technol. Lett. (to be published).

] presents how plasmonic waves propagate through a plasmonic waveguide coupled with a nanocavity formed by a pair of metallic nanorods. In this paper, we postulate to use a pair of L-shaped metallic nanorods to form a nanocavity coupled with a plasmonic waveguide to effectively focus the power of the plasmonic waves, and thereafter convert them into electric signals. The L-shaped nanorods, which form a half-wavelength dipole nanoantenna as well as the nanocavity, are used to couple, concentrate as well as enhance the electromagnetic fields from the plasmonic waveguide. The L-shaped nanorods are also designed as a half-wavelength waveguide in the propagation direction to further enhance the electric fields in the nanocavity where the peak of the standing waves is generated. Furthermore, the L-shaped nanorods are also functioned as the electrodes of the plasmonic detector, leading to an ultra-compact planar detector structure yet easy to be fabricated. The plasmonic waveguide and the plasmonic detector are electrically isolated, enabling a complex optical-electric circuitry on a nanoscale footprint.

Figure 1
Fig. 1 Schematics of a plasmonic detector coupled with a plasmonic waveguide. The plasmonic waves, propagating along the waveguide, are focused in a nanocavity and converted into photocurrent via the plasmonic detector.
shows the proposed structure of a plasmonic detector, which is realized by means of a metal-semiconductor-metal (MSM) photodetector, coupled with a metal-insulator-metal (MIM) subwavelength waveguide. The MIM waveguide consists of a 100nm silica slot sandwiched between two pieces of Ag (ε = −86.24 + 8.74i [30

30. D. Palik, Handbook of optical Constants of Solid (Academic, New York, 1985).

]) thin films with a thickness of 50nm. This type of waveguide is able to support a spatial field-confined surface plasmonic polariton mode [17

17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

]. The MSM plasmonic detector, which uses a pair of L-shaped silver nanorods as the electrodes, is located 50nm away from the MIM waveguide. The nanocavity aligned by the two L-shaped nanorods is filled with the absorption material Ge (ε = 18.28 + 0.0485i [30

30. D. Palik, Handbook of optical Constants of Solid (Academic, New York, 1985).

]), which is compatible with the standard silicon technology [31

31. L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approaches to the detection of near-infrared light,” J. Quantum Electron. 35(12), 1843–1852 (1999). [CrossRef]

]. The leads of the MSM plasmonic detector are two conducting wires made of transparent conduction oxide (TCO) ZnO (ε = 3.712), which has less impact on the resonant fields in the nanocavity. The entire structure is embedded in SiO2 (ε = 2.085), for practical experimental considerations, e.g., to avoid external contaminations. The operating wavelength is 1.55μm in our study. The simulation is carried out using finite integral time domain method in the transient solver with CST Microwave Studio [32]. Only the fundamental transverse-magnetic mode, which is excited by the waveguide port, is considered due to the nature of the MIM waveguide. 2.5nm and 5nm mesh steps are applied in the critical and non-critical regions, respectively. Open boundary conditions are applied with SiO2 as the background material. Furthermore, the final results are verified using Ansoft in frequency domain via the finite element method.

The electromagnetic fields propagated from the MIM waveguide are localized and enhanced in the nanocavity. A nanoantenna is formed by the two arms of the L-shaped nanorods in the y-direction, which corresponds to the direction of the electric fields in the MIM waveguide because of the transverse-magnetic nature of the surface plasmons [17

17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

]. When the nanoantenna operates at the resonant frequency, the maximum electromagnetic energy will be received from the MIM waveguide and concentrated in the nanocavity between the two nanorods. The gap width has a high impact on the resonant fields in the nanocavity [24

24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]

]. The two nanorods together with the material inside the nanocavity form a planar capacitor. The smaller the gap, the larger the capacitance is; therefore, the stronger the electric fields are. However, a smaller gap implies a smaller active volume and hence less absorption of the detector. The integration of the electric-field intensity over the nanocavity or the power absorption is more interesting for a plasmonic detector. Figure 2
Fig. 2 Power absorption in the nanocavity as a function of the length of the nanoantenna, for various widths of gaps (g) between two L-shaped nanorods.
shows the power absorption in the nanocavity as a function of the length of the nanoantenna for various gaps. The resonant length of the nanoantenna increases with an increase of the gap width owing to the decrease of the coupling between two arms of the nanoantenna [24

24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]

]. The power absorption at the resonant length does not increase monolithically with the decrease of the gap width. The maximum value appears when the length of the nanoantenna is 350nm and the gap width is 50nm. These dimensions agree with those used in the Ge photodetector demonstrated by Miller’s Group [19

19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]

]. Note that the resonant length of the nanoantenna is substantially shorter than the half of the free-space wavelength, which is the resonant length of a traditional half-wave dipole antenna at radio or microwave frequencies. This is because that the metallic nanorods are no longer perfect electric conductors at optical frequencies. In addition, two arms of the nanoantenna are strongly coupled by the interaction of the localized surface polaritons. As a result, the effective wavelength of the near-field around the nanorods is much shorter than the free-space one and hence the resonant length of the nanoantenna becomes shorter [26

26. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]

].

The fields in the nanocavity are further enhanced through a nanorod waveguide, which is formed by the other two arms of the L-shaped nanorods in the x-direction. A standing wave propagates along the nanorod waveguide as a result of the interference of the forward wave and the reflection wave from the opened right-end of the nanorod waveguide. Specifically, if the length of the nanorod waveguide is one-half the effective wavelength, the electric fields will exhibit a cosine distribution along the nanorod waveguide [33

33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).

], and the fields in the nanocavity can be enhanced. Figure 3a
Fig. 3 Normalized averaged electric-field intensity in the nanocavity as a function of the length of the nanorod waveguide. The maximum value appears when the length is 190nm. (b) The distribution of the electric and magnetic fields in the xy-plane crossing the center of the nanorods when the nanorod waveguide is 50nm (straight nanorods) and 190nm (L-shaped nanorods), respectively.
shows the averaged electric-field intensity in the nanocavity as a function of the length of the nanorod waveguide. The maximum of the fields are obtained when the length of the nanorod waveguide is 190nm, and the averaged electric-field intensity in the nanocavity is enhanced by 42% comparing to the case where two straight nanorods are used (waveguide length = 50 in Fig. 3a). Figure 3b shows the distribution of the electric and magnetic fields in the xy-plane crossing the center of the nanorods when the length of the nanorod waveguide is 50nm (straight nanorods) and 190nm (L-shaped nanorods), respectively. We see that the electric fields are concentrated in the nanocavity and the magnetic fields are focused in the center of the nanorod waveguide with the L-shaped nanorods; while strong electric fields are observed in far ends, and the strong magnetic fields are located at the sides, of the dipole nanoantenna with the straight nanorods. Poynting vector calculation shows that 81% of the optical power in the MIM waveguide is transmitted to the nanocavity when the L-shaped nanorods are used.

The additional detector leads may slightly affect the resonance of the nanoantenna. To minimize the effects, the leads should be connected to the nanorods in the directions perpendicular to the y-direction as it is the critical direction in the antenna design [33

33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).

]. Moreover, TCO leads are preferred to metallic leads as a metallic waveguide will be formed to guide the received energy to leave the nanocavity if the leads are in the xy-plane. Figure 4
Fig. 4 Normalized averaged electric fields in the nanocavity as a function of the length of the leads (ZnO wires) connected to the L-shaped nanorods at three different locations shown in the inset. The effect of the ZnO leads on the electric fields in the nanocavity is less than 3%.
shows the normalized averaged electric fields in the nanocavity as a function of the length of the leads connected to the L-shaped nanorods at three different locations shown in the inset. The leads are made of two ZnO wires and the cross-section of each is 50nm × 50nm. We see, for all three cases, that the averaged electric fields in the nanocavity reduce slightly with increasing the length of the leads at the beginning and the decrease is saturated when the length is further increased. The saturation feature is favored in real applications. The decrease of the electric fields is less than 3% in all three cases. This trivial effect could be compensated as shown in the following section. However, the resistance of the TCO leads may need to be taken into further consideration in the experimental realization of the detector.

Figure 5
Fig. 5 Electric fields propagating along the center of the plasmonic waveguide in the x-direction to the nanocavity in four different cases: with no nanorod, with the straight nanorods, with the L-shaped nanorods, and with the L-shaped nanorods plus the leads. The electric fields are enhanced the most in the nanocavity with the L-shaped nanorods. The origin of the coordinates is located in the central end of the MIM waveguide.
shows the electric fields propagating along the center of the plasmonic waveguide to the nanocavity with three nanoantenna structures: the straight nanorods, the L-shaped nanorods, and the L-shaped nanorods plus the detector leads, respectively. The shaded area corresponds to the location of the nanocavity. The electric fields without nanorods are also shown as a reference. We see that the electric fields are greatly enhanced in the nanocavity by the nanorods, especially by the L-shaped nanorods. However, we also see a large reflection of the electric fields along the MIM waveguide due to mismatched impedance between the MIM waveguide and the plasmonic detector. A stub shown in Fig. 1, which has been widely used for impedance matching at microwave frequencies [33

33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).

], is extended here to perform the impedance matching at optical frequencies.

The MIM waveguide and the plasmonic detector can be modeled as a transmission line, which has a propagation constant γ, characteristic impedance Z0, and a load with impedance ZL. If ZL = Z0, there will be no power reflection from the load. For an arbitrary load ZL, we can match the load ZL to the characteristic impedance Z0 by using a stub located near the end of the waveguide. The transmission line model for the MIM waveguide and the stub is shown in the upper inset in Fig. 6
Fig. 6 The real part of Poynting vectors along the central line of the MIM waveguide in the x-direction for impedance matched/unmatched MIM waveguide with the L-shaped nanorods plus the leads. Upper inset shows the transmission-line model for the MIM waveguide and the stub for the impedance matching. Bottom inset shows the electric fields of the matched and unmatched MIM waveguides along the central line.
. Suppose that the stub is located a distance d from the right end of the waveguide, has the same slot width as that of the plasmonic waveguide, and has a depth l. The impedance of the waveguide between the stub and the load can be expressed as Z1 = Z0(ZL + Z0th(γd))/(Z0 + ZLth(γd)); and the impedance of the stub is given by Z2 = Z0th(γl) [33

33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).

]. To match the characteristic impedance Z0 and the load ZL, we set Z1 + Z2 = Z0. This is a nonlinear complex equation. An analytic solution can only be obtained when the transmission line is lossless. A numerical method is needed herein to obtain the solutions as the losses in the plasmonic waveguides cannot be ignored. The bottom inset in Fig. 6 shows the comparison of the electric field distribution along the central line in the matched and un-matched MIM waveguides, where the d and l for the stub are found to be 382nm and 58nm, respectively. It is evident that insignificant portion of power is reflected to the source in the matched waveguide and higher power transmission (around 6%) is achieved from the matched MIM waveguide to the nanocavity as shown in Fig. 6.

The electric characteristics of the plasmonic detector are studied with a 2-D model of a MSM photodetector. In this model, the MSM photodetector is formed by the absorption material Ge, which is filled in the nanocavity, and the two L-shaped nanorods. The photogeneration rates in the absorption material are calculated by using η|E|2λα/(2πћc), where η is the internal quantum efficiency, ħ the Planck’s constant, λ the free space wavelength, c the speed of light, α the absorption coefficient and E the integrated electric fields. The photogeneration rate calculated is subsequently inserted into the Luminator and Atlas solvers in the Silvaco TCAD software [37], where the electric characteristics of the plasmonic detector are simulated.

Figure 7 shows the photocurrents of the plasmonic detector as a function of the applied bias voltage, and the photogeneration rates inside the plasmonic detector are shown in the inset, where the internal quantum efficiency η is taken 50%, for simplicity. The photogeneration distribution in the absorption material is proportional to the electric-field intensity in the nanocavity as shown in Fig. 3b. The curve of photocurrents shows that the plasmonic detector works pretty well. Note that the saturated bias voltage of the plasmonic detector is in a level of mille-volts. This implies that the power dispersion of the plasmonic detector will be much smaller than the traditional butt-coupled waveguide photodetectors in which the bias voltage is generally larger than 10 volts [21

21. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]

].

The transit time of the excited carriers across the 50-nm-long active area is estimated to be 0.5ps, assuming the drift velocity of the carriers to be 1 × 107 cm/s in Ge material [38

38. C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24(2), 1014–1026 (1981). [CrossRef]

]. This implies that the cutoff frequency of the plasmonic detector can reach one THz. The capacitance between two nanorods is about 10aF based on the simple parallel-plate model, assuming the distance between the two electrodes is 50nm, and the cross-section of 50nm × 50nm filled by Ge and 50nm × 140nm filled by silica. Such a small internal capacitance of the detector allows a relatively larger external resistance even for high-speed operations. The rough estimation suggests that the detector has a ~THz bandwidth. In addition, the short depletion layer between the two electrodes will greatly reduce the chances for the excited carriers to be recombined. This is helpful to achieve a high responsivity for the plasmonic detector.

In conclusion, we have demonstrated a technique to electrically detect plasmonic waves from a MIM plasmonic waveguide remotely by means of an ultra-compact MSM plasmonic detector. The detector is designed such that its two metallic electrodes − a pair of L-shaped nanorods − are used to form a nanoantenna, a nanocavity as well as a half-wavelength waveguide to efficiently couple the electromagnetic fields from the plasmonic waveguide to the detector. By optimizing the geometric dimensions of, and the distance between, the two electrodes, 81% of the optical power in the MIM waveguide can be transmitted to the active volume (50nm × 50nm × 50nm) of the detector. The leads of the detector are proposed to be made of transparent conduction oxide, which cause negligible effects on the antenna. The stub, traditionally used for impedance matching at radio and microwave frequencies, has been successfully extended to match the impedance of the plasmonic waveguide and the plasmonic detector at optical frequencies, leading to 6% improvement of the power transmission. Electric analyses show that the detector has a potential THz speed, high responsivity and low power dissipation. The proposed plasmonic detector has an ultra-compact yet realistic planar structure which can be easily fabricated. We firmly believe this work will advance for the integration of nanophotonics with modern nanoelectronic circuitry. In addition, this technique may also find applications in plasmonic biosensors, by replacing bulky near-field detection equipments such as scanning near-field spectroscopy with tiny and portable electric output systems.

Acknowledgment

This work was partially supported by Singapore Agency for Science Technology and Research (A*STAR) SERC Research Grant No.082 1410039. The authors also thank Dr. Yuriy Akimov for his valuable discussion on the bias effects on the nanoantenna.

References and links

1.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

2.

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006). [CrossRef]

3.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

4.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]

5.

R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]

6.

S. A. Maier, “Waveguiding: The best of both worlds,” Nat. Photonics 2(8), 460–461 (2008). [CrossRef]

7.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]

8.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]

9.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

10.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

11.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]

12.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]

13.

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]

14.

H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008). [CrossRef]

15.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]

16.

H.-S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15(7), 4216–4223 (2007). [CrossRef] [PubMed]

17.

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]

18.

I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [CrossRef] [PubMed]

19.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]

20.

P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]

21.

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]

22.

A. Aiu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]

23.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [CrossRef] [PubMed]

24.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]

25.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]

26.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]

27.

M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008). [CrossRef]

28.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]

29.

M. X. Gu, P. Bai, and E. P. Li, “Enhancing the reception of propagating surface plasmons using a nanoantenna,” IEEE Photon. Technol. Lett. (to be published).

30.

D. Palik, Handbook of optical Constants of Solid (Academic, New York, 1985).

31.

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approaches to the detection of near-infrared light,” J. Quantum Electron. 35(12), 1843–1852 (1999). [CrossRef]

32.

http://www.cst.com/Content/Products/MWS/Overview.aspx

33.

D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).

34.

I. Codreanu and G. D. Boreman, “Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41(10), 1835–1840 (2002). [CrossRef] [PubMed]

35.

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag: Heidelberg, 1995).

36.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]

37.

http://www.silvaco.com/products/TCAD.html.

38.

C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24(2), 1014–1026 (1981). [CrossRef]

OCIS Codes
(230.0040) Optical devices : Detectors
(230.0250) Optical devices : Optoelectronics
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 26, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 3, 2009
Published: December 18, 2009

Citation
Ping Bai, Ming-Xia Gu, Xing-Chang Wei, and Er-Ping Li, "Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity," Opt. Express 17, 24349-24357 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  5. R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  6. S. A. Maier, “Waveguiding: The best of both worlds,” Nat. Photonics 2(8), 460–461 (2008). [CrossRef]
  7. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  8. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  10. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  12. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  13. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  14. H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008). [CrossRef]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  16. H.-S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15(7), 4216–4223 (2007). [CrossRef] [PubMed]
  17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  18. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [CrossRef] [PubMed]
  19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  20. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  21. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  22. A. Aiu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  23. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  25. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  26. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  27. M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008). [CrossRef]
  28. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  29. M. X. Gu, P. Bai, and E. P. Li, “Enhancing the reception of propagating surface plasmons using a nanoantenna,” IEEE Photon. Technol. Lett. (to be published).
  30. D. Palik, Handbook of optical Constants of Solid (Academic, New York, 1985).
  31. L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approaches to the detection of near-infrared light,” J. Quantum Electron. 35(12), 1843–1852 (1999). [CrossRef]
  32. http://www.cst.com/Content/Products/MWS/Overview.aspx
  33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).
  34. I. Codreanu and G. D. Boreman, “Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41(10), 1835–1840 (2002). [CrossRef] [PubMed]
  35. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag: Heidelberg, 1995).
  36. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  37. http://www.silvaco.com/products/TCAD.html .
  38. C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24(2), 1014–1026 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited