OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3514–3520
« Show journal navigation

Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

Feng Luan, Mark D. Pelusi, Michael R.E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3514-3520 (2009)
http://dx.doi.org/10.1364/OE.17.003514


View Full Text Article

Acrobat PDF (481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 μm wide was fabricated in a 0.87 μm thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W-1km-1 at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10-9. Spectral measurements and simulations indicate extended broadband operation is possible.

© 2009 Optical Society of America

1. Introduction

For wavelength routed networks, wavelength conversion is necessary to avoid the wavelength continuity constraint which otherwise restricts network efficiency. All-optical wavelength conversion based on 3rd order nonlinear processes such as four-wave mixing (FWM), cross-gain modulation (XGM) or cross-phase modulation (XPM) can circumvent these limitations [1

1. B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Area Comm. 16, 1061–1073 (1998). [CrossRef]

]. If the stringent phase-matching condition can be met, FWM provides a highly efficient means of achieving wavelength conversion over broad operational bandwidths. In the normal dispersion regime precise phase-matching cannot be achieved (neglecting higher-order dispersion), although FWM can still provide wavelength conversion over a narrow bandwidth. In the anomalous regime, phase-matching is possible [2

2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).

], enabling broadband operation, which is a key feature for high-speed communication systems.

FWM based wavelength conversion has been demonstrated on several platforms including silica fibre [3

3. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12, 849–851 (2000). [CrossRef]

], SOA devices [4

4. H. Simos, A. Bogris, and D. Syvridis, “Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 595–604 (2004). [CrossRef]

], and silicon nanowires [5

5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef] [PubMed]

]. Chalcogenide glasses have been known as an alternative platform for nonlinear signal processing for at least a decade [6

6. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]

]. These glasses possess the desirable combination of strong nonlinearity (nonlinear index n2 of As2S3 ~130 times greater than silica [6

6. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]

]), intrinsically fast response time (not limited by free carriers as in silicon [7

7. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046–1048 (2006). [CrossRef]

]), and low to moderate nonlinear absorption [8

8. V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef] [PubMed]

]. As with silicon, chalcogenide glasses can be used for the fabrication of planar waveguides, providing a platform for the development of a photonic chip that monolithically integrates several functions and is capable of handling high data rate signals. Several of these functions have been demonstrated previously, including wavelength conversion using XPM [9

9. V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Express 15, 15047–15052 (2007). [CrossRef] [PubMed]

]. However, chalcogenide glasses have a strong normal material dispersion at telecom wavelengths which inhibits FWM processes. Recent progress on dispersion engineered As2S3 chalcogenide glass waveguides has resulted in anomalous dispersion across the C-band, making FWM an ideal scheme for wavelength conversion [10

10. M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008). [CrossRef] [PubMed]

], which was reported recently for low repetition rate.

In this paper, we demonstrate broadband wavelength conversion at 40 Gb/s via FWM in a 6.0 cm long dispersion-engineered As2S3 chalcogenide glass waveguide with a high nonlinear coefficient of ~9800 /W/km. We demonstrate wavelength conversion of a 40 Gb/s signal over an 80 nm span with just over 1.65 dB power penalty at a bit-error rate (BER) of 10-9. Due its anomalous dispersion, this device can be readily reconfigured to convert C-band data into any of the telecommunication bands (S-, C- or L-bands) which covers the 1490 to 1590 nm wavelength range.

2. Principle of operation

The conventional wavelength conversion scheme, shown in Fig. 1(a), uses a continuous wave (CW) as pump. To lower the pump power requirement in this work we used another scheme, shown in Fig.1(b), where a high bit rate signal is used as the pump (at carrier frequency ωp) and co-propagates with a co-polarized monochromatic CW probe (of frequency ωcw) in the waveguide. By filtering and isolating the idler (ωi = 2ωp - ωcw), data encoded in the amplitude of the pulsed pump is transferred to the idler pulses. Apart from lower pump power requirement, an added advantage of the pulsed pump wavelength converter is the potential capability of 2R regeneration [11 –13

11. K. Inoue, “Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,” IEEE Photon. Technol. Lett. 13, 338–340 (2001). [CrossRef]

], which is important for future high bit-rate experiments.

Fig. 1. Comparison of conventional wavelength conversion scheme and the scheme used in this work.

The gain experienced by the CW signal and converted signal is characterized by the exponential coefficient g = [-Δββ + 2γP)]1/2, where Δβ = β 2(ωi - ωp)2/2 is the dispersive-phase mismatch (assuming higher order dispersion has a negligible contribution); β 2 is the second-order dispersion coefficient at the pump wavelength; P is the peak power of the pump; and γ is the nonlinear coefficient. For exponential gain to occur near ωp, g must be real and thus β 2 must be negative, or the group-velocity dispersion GVD must be positive (i.e. the dispersion is anomalous) [2

2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).

]. The material dispersion of As2S3 chalcogenide glass is large and normal and at a wavelength of 1550 nm, Dmat ~ -360 ps/nm/km. However, the GVD experienced by a propagating mode is a combination of the dispersion due to the material with that due to the geometry of the waveguide (Dwg) [14

14. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall November1983)

], i.e. GVD = Dmat + Dwg. Reducing the transverse dimensions of the waveguide (height and width) results in an increasing anomalous Dwg [15

15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007). [CrossRef] [PubMed]

], thus the GVD can be engineered to a specific value. For wavelength conversion, a small and anomalous dispersion is required for efficient and broadband FWM.

A diagram of the engineered As2S3 waveguide and its dispersion is shown in Fig. 2. The dispersion for the fundamental TE and TM modes was calculated using a finite element method (RSoft FemSIMTM) and shows that the dispersion of the fundamental TE (horizontally polarized) mode remains normal, while the dispersion of the TM (vertically polarized) mode is small and anomalous within the C-band [15

15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007). [CrossRef] [PubMed]

].

3. Experimental results

Fig. 2. (a) The schematic plot of the waveguide and (b) the calculated group velocity dispersion of fundamental TM and TE mode (right).
Fig. 3. Experimental setup for wavelength conversion by FWM.

Figure 3 shows the experimental setup used. The signal (pump) was generated from an optically filtered 40 GHz actively mode-locked fibre laser (MLFL) producing a 2 ps pulse train. An external electro-optic Mach-Zehnder (MZ) modulator encoded a pseudorandom sequence (PBRS) of length 231-1 bits generated from a 40 Gb/s pattern generator. The pulse train was amplified using a high-power erbium-doped fibre amplifier (EDFA) and passed through a 5 nm band-pass filter (BPF) to remove the ASE noise background. A 70/30 coupler combined the signal (70%) with a CW probe (30%) that was generated from an amplified external-cavity diode-laser and filtered with a 1 nm BPF. The polarization of both the pump and probe were controlled to allow alignment to the TM mode of the waveguide, which has anomalous dispersion, and to maximize the conversion efficiency. Coupling into the TM and TE modes was distinguished by observing the differential group delay on an optical sampling scope; the group velocity of the TM mode is slower than that of the TE mode throughout the C-band.

Fig. 4. Measured optical spectra after propagation through the As2S3 waveguide for the 40G/s input data pulses centered at (a) 1535 nm and (b) 1560 nm, with the wavelength offset of the CW probe varied. The solid blue line represents the experimental data, while the dashed red lines represent simulations using the SSFM. The inset shows an example spectrum at input.

Bit error rate testing (BERT) of the converted data was carried out with the input 40 Gb/s signal at 1550 nm and the CW probe at 1570 nm. The wavelength converted signal at 1530 nm was filtered with a 5 nm BPF and directed to the receiver consisting of a low-noise EDFA, 1.0 nm BPF, variable optical attenuator (VOA) and 40 GHz photo-detector (PD). The MLFL, pattern generator and receiver were synchronized using an external 40 Gb/s RF clock. The average power of the 40 Gb/s signal at the input connector of the waveguide was 21.5 dBm for the signal 19.2 dBm for the probe for a total of 23.5 dBm (224 mW). The power coupled into the As2S3 waveguide was ~19.7 dBm (93 mW). The peak power of the input signal is about 730mW inside the waveguide. Figure 5(a) shows the spectrum at the output of the waveguide. The measured bit error rates (BER) for varying received power are shown in Fig. 5(b). At a BER of 10-9, there is 1.65 dB power penalty for the converted signal compared to the original 40 Gb/s signal compared with the back to back (B2B) measurements (the signal taken directly from the MZ modulator to the VOA then to the photodetector). The power penalty is mainly due to the noise from the amplifiers and small power fluctuations of the CW probe due to the weak Fabry-Pérot effects from the facets of the waveguide.

Fig. 5. (a) Output spectrum at the output of the waveguide. (b): BER versus received optical power for back-to-back (B2B) and converted signals. (c): Data eye diagram (65GHz optical bandwidth detector) for 40 Gb/s back-to-back input (B2B) and wavelength converted signals

4. Discussion and conclusion

In conclusion, we have demonstrated 40 G/s wavelength conversion using dispersion engineered chalcogenide planar waveguide and achieved broadband operation. The converted signal was error free and has 1.65 dB power penalty. This device can be readily reconfigured to convert C-band data into any of the telecommunication bands (S-, C- or L-bands) which covers the 1490 to 1590 nm wavelength range. Together with other reported platforms [3–5

3. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12, 849–851 (2000). [CrossRef]

, 18–21

18. M.A. Foster et al., “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Nature 441, 960, (2006) [CrossRef] [PubMed]

], the dispersion engineered As2S3 waveguides (possessing ultra-fast nonlinearity and broadband operation capability) is a good candidate for ultra-high bandwidth optical signal processing. For our future work we will concentrate on lowering the insertion losses and making longer waveguides, which will reduce the power consumption and increase the conversion efficiency.

Fig. 6. Simulated comparison of the wavelength conversion efficiency of the dispersion engineered waveguide (with anomalous dispersion, solid line) to the As2S3 waveguide used in previous FWM experiments [9] (with normal dispersion, dashed line). The pump is centered at a wavelength of 1530 nm and the peak power is scaled (0.35 W and 1.62 W) such that the peak intensities are the same in both cases, although the propagation losses differ.

Acknowledgments

Funding from the Australian Research Council (ARC) through its Federation Fellow and Centres of Excellence programs is gratefully acknowledged. The Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS) is an ARC Centre of Excellence.

References and links

1.

B. Ramamurthy and B. Mukherjee, “Wavelength conversion in WDM networking,” IEEE J. Sel. Area Comm. 16, 1061–1073 (1998). [CrossRef]

2.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).

3.

E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photonics Technol. Lett. 12, 849–851 (2000). [CrossRef]

4.

H. Simos, A. Bogris, and D. Syvridis, “Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier,” J. Lightwave Technol. 22, 595–604 (2004). [CrossRef]

5.

H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4629–4637 (2005). [CrossRef] [PubMed]

6.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol. 3, 142–148 (1997). [CrossRef]

7.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photonics Technol. Lett. 18, 1046–1048 (2006). [CrossRef]

8.

V. G. Ta’eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007). [CrossRef] [PubMed]

9.

V. G. Ta’eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Express 15, 15047–15052 (2007). [CrossRef] [PubMed]

10.

M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008). [CrossRef] [PubMed]

11.

K. Inoue, “Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber,” IEEE Photon. Technol. Lett. 13, 338–340 (2001). [CrossRef]

12.

A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol. 21, 1892–1902 (2003). [CrossRef]

13.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2008). [CrossRef]

14.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall November1983)

15.

M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007). [CrossRef] [PubMed]

16.

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007). [CrossRef] [PubMed]

17.

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photonics Technol. Lett. 19, 1496–1498 (2007). [CrossRef]

18.

M.A. Foster et al., “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Nature 441, 960, (2006) [CrossRef] [PubMed]

19.

J. Hansryd et al. “Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier,” Elect. Lett. 37, 584 (2001). [CrossRef]

20.

C. Bres, et al. “1-to-40 Channel Multicasting in Wideband Parametric Amplifier,” IEEE LEOS Winter Topicals, Sorrento Italy 1/2008

21.

J.M. Chavez Boggio et al. “730-nm optical parametric conversion from near- to short-wave infrared band,” Optics Exp. 16, 5435 (2008). [CrossRef]

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1150) Optical devices : All-optical devices
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: November 17, 2008
Revised Manuscript: February 2, 2009
Manuscript Accepted: February 18, 2009
Published: February 23, 2009

Citation
Feng Luan, Mark D. Pelusi, Michael R. E. Lamont, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals," Opt. Express 17, 3514-3520 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ramamurthy and B. Mukherjee, "Wavelength conversion in WDM networking," IEEE J. Sel. Area Commun. 16, 1061-1073 (1998). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001).
  3. E. Ciaramella and S. Trillo, "All-optical signal reshaping via four-wave mixing in optical fibers," IEEE Photonics Technol. Lett. 12, 849-851 (2000). [CrossRef]
  4. H. Simos, A. Bogris, and D. Syvridis, "Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier," J. Lightwave Technol. 22, 595-604 (2004). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-i. Takahashi, and S.-i. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  6. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997). [CrossRef]
  7. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photonics Technol. Lett. 18, 1046-1048 (2006). [CrossRef]
  8. V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007). [CrossRef] [PubMed]
  9. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D. Y. Choi, S. Madden, D. Bulla, and B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides," Opt. Express 15, 15047-15052 (2007). [CrossRef] [PubMed]
  10. M. R. Lamont, B. Luther-Davies, D-Y Choi, S. Madden, X. Gai, and B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Express  16, 20374-20381 (2008). [CrossRef] [PubMed]
  11. K. Inoue, "Suppression of level fluctuation without extinction ratio degradation based on output saturation in higher order optical parametric interaction in fiber," IEEE Photon. Technol. Lett. 13, 338-340 (2001). [CrossRef]
  12. A. Bogris and D. Syvridis, "Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers," J. Lightwave Technol. 21, 1892-1902 (2003). [CrossRef]
  13. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics 2, 35-38 (2008). [CrossRef]
  14. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall November 1983)
  15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007). [CrossRef] [PubMed]
  16. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007). [CrossRef] [PubMed]
  17. M. D. Pelusi, V. G. Ta'eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, "Ultra-high Nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing," IEEE Photonics Technol. Lett. 19, 1496-1498 (2007). [CrossRef]
  18. M. A. Foster et al., "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Nature 441, 960, (2006) [CrossRef] [PubMed]
  19. J. Hansryd et al. "Wavelength tunable 40 GHz pulse source based on fibre optical parametric amplifier," Elect. Lett. 37, 584 (2001). [CrossRef]
  20. 1-to-40 Channel Multicasting in Wideband Parametric Amplifier," IEEE LEOS Winter Topicals, Sorrento Italy 1/2008
  21. J. M. Chavez Boggio et al. "730-nm optical parametric conversion from near- to short-wave infrared band," Opt. Express 16, 5435 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited