OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 5 — Mar. 2, 2009
  • pp: 3929–3940
« Show journal navigation

Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications

Gang Chen, Zhengyuan Xu, Haipeng Ding, and Brian M. Sadler  »View Author Affiliations


Optics Express, Vol. 17, Issue 5, pp. 3929-3940 (2009)
http://dx.doi.org/10.1364/OE.17.003929


View Full Text Article

Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider outdoor non-line-of-sight deep ultraviolet (UV) solar blind communications at ranges up to 100 m, with different transmitter and receiver geometries. We propose an empirical channel path loss model, and fit the model based on extensive measurements. We observe range-dependent power decay with a power exponent that varies from 0.4 to 2.4 with varying geometry. We compare with the single scattering model, and show that the single scattering assumption leads to a model that is not accurate for small apex angles. Our model is then used to study fundamental communication system performance trade-offs among transmitted optical power, range, link geometry, data rate, and bit error rate. Both weak and strong solar background radiation scenarios are considered to bound detection performance. These results provide guidelines to system design.

© 2009 Optical Society of America

1. Introduction

Ultraviolet (UV) communication systems have received increased attention due to advances in semiconductor optical sources and detectors, the unique potential for non-line-of-sight (NLOS) operation due to atmospheric scattering, and emerging needs in military and other applications [1

1. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008). [CrossRef]

]. A series of UV communication studies have been conducted and reported since the 1960s [2-7

2. G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 1964.

]. These have covered a wide variety of topics including channel modeling, characterization, system implementation, and networking. However, these early experimental communication systems were based on bulky and power-hungry flashtubes/lamps/lasers as light sources, and generally targeted long range communications. Advances in low cost, small size, low power, high reliability, and high bandwidth deep UV light emitting diodes (LEDs) [8

8. M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G Simin, and M. Asif. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). [CrossRef]

,9

9. V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm deep UV light emitting diodes over metal organic hydride vapor phase epitaxially grown AIN/sapphire templates,” Jpn. J. Appl. Phys. 46, 537–539 (2007). [CrossRef]

] and avalanche photodiodes (APDs) [10

10. X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19, 1822–1824 (2007). [CrossRef]

,11

11. S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19,1744–1746 (2007).

] have motivated recent research in low power short-range UV communications [12-18

12. A. M. Stark, “Ultraviolet non-line of sight digital communications,” M.S. Thesis, University of New Hampshire, Durham, NH, May 2003.

].

In this paper, we are motivated by the recent experimental work [18

18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

] to address the following questions. Is there a general power decay law that captures geometry effects? If so, what are the values of associated parameters such as path loss exponent and path loss factor, and how do they depend on the geometry? And, for an arbitrary geometry and communication range, can one predict communication performance such as bit error rate (BER) without conducting time-consuming experiments?

First we develop a path loss model built upon extensive field test results for a variety of system parameters. In our experiments we employ LEDs with divergent beams, a solar blind filter, and a photomultiplier detector, similar to [17

17. Z. Xu, G. Chen, F. Abou-Galala, and M. Leonardi, “Experimental performance evaluation of non-line-of-sight ultraviolet communication systems,” Proc. SPIE 67090Y, 1–12 (2007).

,18

18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

]. The transmitter (Tx) and receiver (Rx) baseline separation is up to 100 meters. For this relatively short range, we neglect atmospheric absorption and turbulence effects. (Experiments for longer range and larger apex angle require sources with higher emission power than currently available LEDs.) Using a curving-fitting approach, a path loss model which depends on Tx/Rx apex angles and baseline separation is developed. We then study communication performance trade-offs as a function of the system parameters. These include transmitted power, data rate, communication range, apex angles, and the resulting BER. We also consider night and day operation, corresponding to a range of detector noise, from low (near shot noise limited), to medium and high solar noise cases. Overall our results provide guidelines for system design.

2. Experimental setup

Our path loss results are based on a solar blind UV path loss measurement test-bed at 260 nm wavelength, as shown in Fig. 1. The transmitter used a signal generator to feed a current driver circuit that powered an array of 7 ball-lens UV LEDs. The driving current for each LED was 30 mA, yielding an average radiated optical power of 0.3 mW. Using a beam profiler, the beam divergence angle was measured to be 17°. At the receiver, a solar blind filter was mounted on top of the circular sensing window of a Perkin-Elmer photomultiplier tube (PMT) module MP1922. (As APD devices mature and in future replace the PMT, the corresponding device parameters such as detection area, multiplication gain, quantum efficiency and dark count rate will need to be incorporated for accurate modeling [10

10. X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19, 1822–1824 (2007). [CrossRef]

,11

11. S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19,1744–1746 (2007).

].) The PMT’s output current was fed to a high speed preamplifier, whose output was further sent to a photon counter for photon detection. The LEDs, PMT and filter were attached to Tx and Rx angular control modules, respectively. Each module utilized two perpendicular rotation stages to achieve a precise angular control up to 360° in the azimuth and zenith directions. In this work, we have focused on the scenarios where the Tx beam axis and Rx FOV axis were coplanar, and only adjusted Tx and Rx apex angles. The Rx filter had full-width half-maximum (FWHM) bandwidth of 15 nm. Its in-band transmission was 8% and visible-band transmission was below 10-10. The PMT sensing window had a diameter of 1.5 cm, resulting in an active detection area of π(1.5/2)2 = 1.77 cm2. The PMT had an average of 10 dark counts per second (10 Hz), and the in-band UV detection efficiency of 13%. Combining the solar blind filter and PMT, the detector’s effective FOV was estimated to be 30° based on the shape and dimension of filter and PMT.

Fig. 1. NLOS path loss test-bed diagram.

Denote the path loss by L. To obtain L, we seek the ratio of transmitted and received power L=Pt/Pr or 10log10(Pt/Pr) in decibels, estimated as follows. In most of the testing configurations, the received power is typically too weak to be measured via a power measurement unit. Consequently, we use the high sensitivity PMT for photon counting and then adopt the number of received photons per pulse for calculating L. On the other hand, at the Tx, direct measurement of the total number of emitted photons from the LEDs by a photon counter is not possible because the reading easily overflows the counting limit. Thus, the transmitted optical power was measured using a high performance power meter and the corresponding photon count was calculated from the measured power and wavelength. Each photon carries energy hc/λ where c is the speed of light, and h is Planck’s constant. Denote the transmitted pulse duration as Tp. Then the average number of transmitted photons per pulse is Nt=PtTpλ/(hc). The number of photons detected per pulse is Nd, which is a percentage of the number of photons Nr impinging on the receiver (the solar blind filter in series with the PMT). It is given by Nd=ηfηrNr where ηf is the filter transmission and ηr is the PMT detection efficiency. Finally, the path loss is given by 10log10(Nt/Nr) dB.

Fig. 2. LOS path loss versus distance.

3. Path loss measurements and modeling

Our planar communication geometry is shown in Fig. 3 [18

18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

,20

20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

]. Denote the Tx beam full-width divergence by ϕ1, the Rx FOV by ϕ2, the Tx apex angle by θ1, Rx apex angle by θ2, the Tx and Rx baseline separation by r, and the distances of the intersected (overlap) volume V to the Tx and Rx by r1 and r2, respectively.

Fig. 3. UV NLOS link geometry.

We conducted extensive testing for path loss by varying Tx apex angle, Tx and Rx baseline separation, and Rx apex angle. Beam divergence and FOV were fixed; their effects can be investigated with additional optics to control beam width and FOV. The test distance under a full range apex angle (Tx 0~90°, Rx 0~90°) was limited to about 25 m due to the LED array transmission power. We also tested at distances of 70 m and 100 m with small apex angles (0°~45°). Longer range tests (to a few kilometers) will be conducted with a higher power laser UV source.

Experimental and analytical results in [14

14. G. A. Shaw, A. M. Siegel, J. Model, and M. L. Nischan, “Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors,” Proc. SPIE 5417, 250–261 (2004). [CrossRef]

,18

18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

,20

20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

] show that the NLOS channel path loss in tested configurations was proportional to rα where α varies with apex angle. For example, it was shown that Tx and Rx apex angles of 90° result in α close to 1 [14

14. G. A. Shaw, A. M. Siegel, J. Model, and M. L. Nischan, “Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors,” Proc. SPIE 5417, 250–261 (2004). [CrossRef]

,20

20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

], whereas apex angles at 30° or 45° experimentally yield α in a range of 1.4~1.7 [18

18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

]. In addition to this path loss dependence on apex angles, the atmospheric attenuation renders path loss exponentially increasing with r [20

20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

]. We therefore postulate the following model for NLOS path loss

Lall=ξrαeβr,
(1)

For short range communications upon which our measurements rely, the effect of β is negligible with the value of the attenuation coefficient on the order of (1~10) km-1 [4

4. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. Thesis, MIT, Cambridge, MA, 1976.

]. However, we note that its effect may become appreciable when the distance is longer than 1 km. Thus, for the short range case in this paper, we model path loss using

L=ξrα,
(2)

where path loss exponent α and path loss factor ξ are functions of the apex angles.

3.1 Path loss exponent

We conducted many measurements at distances of 8 m, 15 m and 25 m, for a large range of Tx/Rx apex angles. At each distance, we varied both the Tx apex angle θ1 and the Rx apex angle θ2 from 0° to 90° with a step size of 10°. We recorded the received number of photons and obtained the path loss L for each distance and geometry as described above. Using these measurements, we applied a curve-fitting technique to estimate the path loss exponent α and path loss factor ξ. For example, to find α for any fixed pair of Tx and Rx apex angles, we utilized all path loss measurements at different distances and obtained the ratios Li/Lj=(ri/rj)α, for i, j=1,2,3, ij. Notice that α is not a function of distance. Then α was estimated from the average of log10(Li/Lj)/log10(ri/rj). For small apex angles, we improved the estimation accuracy by obtaining additional data points at the longer distances of 75 m and 100 m.

Fig. 4. Path loss exponent α versus Rx apex angle for different Tx apex angles.

Figure 4 shows the path loss exponent α for different Tx and Rx apex angles. The exponent α varies from 0.45 to 2.4. For Rx apex angle less than 20°, α is close to 2. In this case, path loss is very sensitive to distance. For Rx apex angle larger than 70°, α is either close to 1 or less than 1, leading to low sensitivity with distance. For both Tx and Rx angles close to 90°, α is around 1, which agrees with results reported in [14

14. G. A. Shaw, A. M. Siegel, J. Model, and M. L. Nischan, “Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors,” Proc. SPIE 5417, 250–261 (2004). [CrossRef]

].

Although correspondence of the path loss exponent to apex angles is numerically demonstrated by this figure, a closed-form analytical expression for the path loss exponent as a function of apex angles is difficult to obtain due to complexity of their relations. The same situation also applies to the path loss factor to be discussed next.

3.2 Path loss factor

The small path loss exponent a corresponding to large Tx and Rx apex angles does not mean that the total path loss is smaller for a larger apex angle since it also depends on the path loss factor ξ. In fact, ξ becomes dominant in the overall path loss as angles increase, as seen from Fig. 5. This was obtained as an average of all Li/riα according to Eq. (2) and estimated path loss exponent α as above. The path loss factor changes by several orders of magnitude for varying Rx angles at any given Tx angle. The path loss dynamic range with a small Tx angle varies considerably more than with a large Tx angle. For example, we observe two orders of magnitude change with a 90° Tx angle, while this increases to five orders of magnitude with a 10° Tx angle. On the other hand, for a fixed Rx angle, the difference is about three orders of magnitude when the Rx angle is small, and less than one order of magnitude when the Rx angle is large.

Fig. 5. Path loss factor ξ versus Rx apex angle for different Tx apex angles.

3.3 Path loss model validation

As a means of validation, we used the above results to predict path loss for Tx and Rx apex angles up to 40° with a baseline separation of 100 m. (Recall that at this range we are restricted to smaller apex angles to achieve sufficient signal-to-noise ratio at the receiver.) Figure 6 compares prediction and measurement, depicting reasonably good agreement between predicted and tested results. The prediction errors for each Tx apex angle are within a few decibels over the specified range of the Rx apex angle.

Fig. 6. Comparison of predicted and tested path loss for different Tx and Rx angles at 100 m distance.
Fig. 7. Comparison with single scattering model for different Tx and Rx angles.

Next, we apply our model to predict communication performance and study system tradeoffs in power, distance, data rate and BER.

4. Predicted communication bit-error performance

The BER for a communication system depends on several parameters, including modulation format, detector type, transmitted power, path loss (as a function of angles and distance), data rate, and noise. We restrict our attention to on-off keying (OOK) and direct detection (e.g., see [21

21. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., (John Wiley & Sons, New York, 1995).

]) and analyze BER performance of the corresponding UV system. Analysis for other cases can be similarly carried out.

The BER expression may take different forms depending on the noise level and distribution. For photon counting with a very low dark count rate PMT detector, we assume the primary noise stems from solar radiation, and the noise level varies from day to night. With a 200 μs pulse width, we found that low, medium and high noise conditions gave rise to measured (0.03, 0.95, 2.9) photon counts per pulse, equivalent to the noise count rates of (0.15, 4.75, 14.5) kHz respectively. For a medium or high noise scenario, such as daytime operation or with longer pulses, the noise is assumed Gaussian distributed. Then, the BER may be calculated as a function of signal to noise ratio (SNR) using the Q-function [21

21. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., (John Wiley & Sons, New York, 1995).

]

BERmh=Q(SNR).
(3)

Following our discussion in Section 2, the SNR is calculated from the ratio of the number of detected signal photons Nd and noise photons Nn by SNR=Nd/Nn, where Nd is given by Nd=ηfηrNr=ηfηrNt/L=ηfηrPtλ/(hcRL) and R is the data rate. For the low noise case, such as at night time or with shorter pulses, we adopt a shot-noise-limited BER formula assuming both signal and noise follow Poisson distributions [21

21. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., (John Wiley & Sons, New York, 1995).

]

BERl=12k=0mT(Nd+Nn)ke(Nd+Nn)k!+12k=mT+1+∞NekeNnk!,
(4)

where mT is the optimum threshold given by an integer floor operation of a continuous variable a

mT=a,a=Ndln(1+NdNn).
(5)

Note that Nd is a function of multiple system parameters.

4.1 BER versus path loss

Path loss directly impacts BER performance since it affects Nd. Their correspondence is demonstrated in Fig. 8 for the high, medium and low noise cases. Here the Tx optical power is 10 mW and data rate is 5 kbps. BER varies rapidly at low path loss, and converges to 0.5 as path loss increases to infinity. The slightly non-smooth curve in the low noise case is due to discrete-valued formula (4). A roughly 9 dB path loss difference is observed at BER of 10-3 between the low and high noise cases.

Fig. 8. BER versus path loss under Tx power 10 mW.

4.2 BER versus distance

As an example with realistic system parameters, let UV LEDs emit 10 mW optical power, the Tx and Rx apex angles be 30°, and a data rate of 5 kbps. Figure 9 shows BER performance against distance for the high, medium, and low noise cases. According to Fig. 4 and Fig. 5, the path loss exponent at these apex angles is 1.72 and path loss factor is 8.54×106. These numbers translate into path loss as a function of distance using Eq. (2). For example, for r = (10, 20, 30) m, the path loss is calculated to be (86.5, 91.7, 94.7) dB. Then for the high noise case, the corresponding BERs (4.5×10-5, 1.6×10-2, 6.4×10-2) in this figure are consistent with those three points in Fig. 8. Similarly one can find correspondence for the medium and low noise cases. BERs are sensitive to distance when the distance is small, and converge to 0.5 at a large baseline separation. Note that in this scenario, for a given noise level, the BER changes by a few orders of magnitude when r increases from 10 m to 20 m.

Fig. 9. BER versus communication distance under 30° Tx/Rx apex angle and 10 mW power.

4.3 BER versus Tx/Rx apex angles

Fig. 10. BER versus Tx/Rx apex angles at 25 m distance under 10 mW transmitted power.

Assume an LED array with power 10 mW, communication distance 25 m, and data rate of 5 kbps. Figure 10 depicts the resulting BERs. Large BER variations can be observed for different geometry choices. In addition, the slopes of the plotted BER versus Rx apex angle curves are different for different Tx apex angles. A small Tx apex angle leads to sharp degradation of BER as the Rx apex angle increases. In general, when the Rx angle is smaller than 40°, BER degrades very fast with increased Rx angle. For example, when the Tx angle is 60°, the BER increases from 3×10-5 to 10-1 when the Rx angle changes from 20° to 40°. For a fixed Rx angle less than 30°, the BER is very sensitive to the Tx angle. This angle dependence may be attributed to angular dependent scattering, as represented by the scattering phase function [4

4. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. Thesis, MIT, Cambridge, MA, 1976.

,20

20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

].

4.4 BER versus Tx optical power

Fig. 11. BER versus transmitted optical power for different communication distances.

Transmitted optical power has an effect on BER that is similar to that from the inverse of path loss. In Figure 11, we vary the Tx optical power Pt from 1 mW to 300 mW and show BER versus Pt for different distances. Assume the Tx and Rx apex angles are fixed at 30° (giving path loss exponent 1.72), data rate of 5 kbps and a medium noise environment. If we increase the distance by a factor of four, such as from 25 m to 100 m, while maintaining a constant detected signal power (equivalently constant BER), Pt has to increase by a factor of 41.72 ≈ 10.86 according to Eq. (2). This can be observed in Figure 11.

4.5 BER versus data rate

Fig. 12. BER versus data rate with 30° Tx/Rx apex angle and 10 mW transmitted power.

BER performance and communication data rate also provide a trade-off with the other parameters fixed: the lower the data rate, the lower the BER. Here we consider one pulse per bit and vary the data rate from 100 bps to 1 Mbps by varying pulse width TP from 10 ms to 1 μs. The Tx and Rx angles are fixed at 30° and Tx power at 10 mW, and we consider the low noise case. Figure 12 depicts BER versus data rate for different distances. For a given distance, the BER typically changes by five orders of magnitude when the data rate changes by only one order. For a fixed BER, the data rate decreases by a factor of x when the distance increases by x 1.72 times, as predicted by Eq. (2) and SNR expressions. For example, from 20 m to 100 m at a BER of 10-3, the data rate decreases from 5.74 kbps to 360 bps, about a 15.9 times decrease, which is consistent with a predicted value of 51.72. The high sensitivity of BER to distance is due to the high sensitivity of path loss over some ranges, as in Fig. 8.

5. Conclusions and future work

Further study is needed to develop an analytical NLOS UV channel impulse response model from which path loss can be found. The model should incorporate different meteorological conditions, the effects of beam divergence angle and FOV. This enables study of NLOS UV channel capacity [22

22. M. R. Frey, “Information capacity of the Poisson channel,” IEEE Trans. Inf. Theory 37, 244–256 (1991). [CrossRef]

], as well as achievable rate for particular system choices. Incorporating the attenuation factor β in the channel model is also a topic of interest, enabling analysis for longer ranges. This can be explored experimentally by employing a high power UV source.

Acknowledgments

The authors would like to thank Qunfeng He for his invaluable help with experiments. This work was supported in part by the Army Research Office under Grants W911NF-06-1-0364, W911NF-08-1-0163, and W911NF-06-1-0173, and the Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011.

References and links

1.

Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008). [CrossRef]

2.

G. L. Harvey, “A survey of ultraviolet communication systems,” Naval Research Laboratory Technical Report, Washington D.C., March 1964.

3.

D. E. Sunstein, “A scatter communications link at ultraviolet frequencies,” B.S. Thesis, MIT, Cambridge, MA, 1968.

4.

D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M.S. Thesis, MIT, Cambridge, MA, 1976.

5.

E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” final report of Aeronautical Research Associates of Princeton, Inc., NJ, February 1976.

6.

D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1977.

7.

W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Army Research Office Project Report, Research Triangle Park, NC, January 1980.

8.

M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G Simin, and M. Asif. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). [CrossRef]

9.

V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm deep UV light emitting diodes over metal organic hydride vapor phase epitaxially grown AIN/sapphire templates,” Jpn. J. Appl. Phys. 46, 537–539 (2007). [CrossRef]

10.

X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, “Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes,” IEEE Photon. Technol. Lett. 19, 1822–1824 (2007). [CrossRef]

11.

S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19,1744–1746 (2007).

12.

A. M. Stark, “Ultraviolet non-line of sight digital communications,” M.S. Thesis, University of New Hampshire, Durham, NH, May 2003.

13.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks,” Proc. SPIE 5611, 244–254 (2004). [CrossRef]

14.

G. A. Shaw, A. M. Siegel, J. Model, and M. L. Nischan, “Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors,” Proc. SPIE 5417, 250–261 (2004). [CrossRef]

15.

G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 62310C, 1–12 (2006).

16.

Z. Xu, “Approximate performance analysis of wireless ultraviolet links,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Proc. (IEEE, Honolulu, 2007).

17.

Z. Xu, G. Chen, F. Abou-Galala, and M. Leonardi, “Experimental performance evaluation of non-line-of-sight ultraviolet communication systems,” Proc. SPIE 67090Y, 1–12 (2007).

18.

G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]

19.

M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972 (1991). [CrossRef]

20.

Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]

21.

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., (John Wiley & Sons, New York, 1995).

22.

M. R. Frey, “Information capacity of the Poisson channel,” IEEE Trans. Inf. Theory 37, 244–256 (1991). [CrossRef]

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 30, 2008
Revised Manuscript: February 4, 2009
Manuscript Accepted: February 8, 2009
Published: February 27, 2009

Citation
Gang Chen, Zhengyuan Xu, Haipeng Ding, and Brian Sadler, "Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications," Opt. Express 17, 3929-3940 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Xu and B. M. Sadler, "Ultraviolet communications: potential and state-of-the-art," IEEE Commun. Mag. 46, 67-73 (2008). [CrossRef]
  2. G. L. Harvey, "A survey of ultraviolet communication systems," Naval Research Laboratory Technical Report, Washington D.C., March 1964.
  3. D. E. Sunstein, "A scatter communications link at ultraviolet frequencies," B.S. Thesis, MIT, Cambridge, MA, 1968.
  4. D. M. Reilly, "Atmospheric optical communications in the middle ultraviolet," M.S. Thesis, MIT, Cambridge, MA, 1976.
  5. E. S. Fishburne, M. E. Neer, and G. Sandri, "Voice communication via scattered ultraviolet radiation," final report of Aeronautical Research Associates of Princeton, Inc., NJ, February 1976.
  6. D. M. Junge, "Non-line-of-sight electro-optic laser communications in the middle ultraviolet," M.S. Thesis, Naval Postgraduate School, Monterey, CA, December 1977.
  7. W. S. Ross and R. S. Kennedy, "An investigation of atmospheric optically scattered non-line-of-sight communication links," Army Research Office Project Report, Research Triangle Park, NC, January 1980.
  8. M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. Asif. Khan, "Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells," IEEE J. Sel. Top. Quantum Electron. 8, 302-309 (2002). [CrossRef]
  9. V. Adivarahan, Q. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, "Robust 285 nm deep UV light emitting diodes over metal organic hydride vapor phase epitaxially grown AlN/sapphire templates," Jpn. J. Appl. Phys. 46, 537-539 (2007). [CrossRef]
  10. X. Bai, D. Mcintosh, H. Liu, and J. C. Campbell, "Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes," IEEE Photon. Technol. Lett. 19, 1822-1824 (2007). [CrossRef]
  11. S. C. Shen, Y. Zhang, D. Yoo, J. B. Limb, J. H. Ryou, P. D. Yoder, and R. D. Dupuis, "Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD," IEEE Photon. Technol. Lett. 19, 1744-1746 (2007).
  12. A. M. Stark, "Ultraviolet non-line of sight digital communications," M.S. Thesis, University of New Hampshire, Durham, NH, May 2003.
  13. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks," Proc. SPIE 5611, 244-254 (2004). [CrossRef]
  14. G. A. Shaw, A. M. Siegel, J. Model, and M. L. Nischan, "Field testing and evaluation of a solar-blind UV communication link for unattended ground sensors," Proc. SPIE 5417, 250-261 (2004). [CrossRef]
  15. G. A. Shaw, A. M. Siegel, and J. Model, "Extending the range and performance of non-line-of-sight ultraviolet communication links," Proc. SPIE 62310C, 1-12 (2006).
  16. Z. Xu, "Approximate performance analysis of wireless ultraviolet links," in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Proc. (IEEE, Honolulu, 2007).
  17. Z. Xu, G. Chen, F. Abou-Galala, and M. Leonardi, "Experimental performance evaluation of non-line-of-sight ultraviolet communication systems," Proc. SPIE 67090Y, 1-12 (2007).
  18. G. Chen, F. Abou-Galala, Z. Xu, and B. M. Sadler, "Experimental evaluation of LED-based solar blind NLOS communication links," Opt. Express 16, 15059-15068 (2008). [CrossRef] [PubMed]
  19. M. R. Luettgen, J. H. Shapiro, and D. M. Reilly, "Non-line-of-sight single-scatter propagation model," J. Opt. Soc. Am. A 8, 1964-1972 (1991). [CrossRef]
  20. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, "Analytical performance study of solar blind non-line of sight ultraviolet short-range communication links," Opt. Lett. 33, 1860-1862 (2008). [CrossRef] [PubMed]
  21. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed., (John Wiley & Sons, New York, 1995).
  22. M. R. Frey, "Information capacity of the Poisson channel," IEEE Trans. Inf. Theory 37, 244-256 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited