OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 117–122
« Show journal navigation

1D photonic band formation and photon localization in finite-size photonic-crystal waveguides

Kirill A. Atlasov, Marco Felici, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 117-122 (2010)
http://dx.doi.org/10.1364/OE.18.000117


View Full Text Article

Acrobat PDF (1327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transition from discrete optical modes to 1D photonic bands is experimentally observed and numerically studied in planar photonic-crystal (PhC) LN microcavities of length N. For increasing N the confined modes progressively acquire a well-defined momentum, eventually reconstructing the band dispersion of the corresponding waveguide. Furthermore, photon localization due to disorder is observed experimentally in the membrane PhCs using spatially resolved photoluminescence spectroscopy. Implications on single-photon sources and transfer lines based on quasi-1D PhC structures are discussed.

© 2009 OSA

Multi-dimensional photon confinement in optical cavities and waveguides provides efficient means for tailoring light-matter interaction via the control of the photon density of states, polarization and wavefunction [1

1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]

,2

2. V. S. C. Manga Rao and S. Hughes, “"Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient "on chip" single photon gun,” Phys. Rev. Lett. 99, 193101 (2007).

]. Three-dimensional (3D) confinement in photonic-crystal (PhC) nano-cavities was instrumental in attaining substantial modifications of the spontaneous emission in semiconductor nanostructures via the Purcell effect [3

3. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]

], and in enhancing the efficiency and photon indistinguishability of quantum dot (QD) single-photon emitters [4

4. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]

,5

5. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]

]. It also allowed for the generation of QD polaritons [6

6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]

], as well as for the construction of ultra-low-threshold microcavity lasers featuring very high spontaneous-emission coupling factors [7

7. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]

,8

8. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]

]. The particularity of one-dimensional (1D), and quasi-1D photonic structures lies not only in the provision of singular density of states, but also in the possibility for photon transport within the 1D photonic bands. This makes them attractive for realizing both on-chip generation [2

2. V. S. C. Manga Rao and S. Hughes, “"Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient "on chip" single photon gun,” Phys. Rev. Lett. 99, 193101 (2007).

] and manipulation of single and entangled photons, useful for applications in quantum information communications [9

9. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]

,10

10. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997). [CrossRef]

] and processing [11

11. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002). [CrossRef] [PubMed]

]. Unlike fully confined 0D photonic cavities, however, 1D systems are highly sensitive to disorder in the dielectric-constant distribution, which can induce photon localization [12

12. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]

,13

13. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef] [PubMed]

]. Such localization can significantly alter the characteristics of light-matter interaction and photon transport in quasi-1D photonic systems –featuring either regular [14

14. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

] or coupled-cavity waveguides [15

15. D. P. Fussell, S. Hughes, and M. M. Dignam, “Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides,” Phys. Rev. B 78(14), 144201 (2008). [CrossRef]

]– due to the modifications in the spectral and spatial distributions of the photon wavefunction, with crucial implications on single-photon sources and photon-transfer lines. The experimental investigation of the formation and perturbation of 1D photonic bands in real structures thus deserves special attention.

Semiconductor PhC membrane LN cavities, consisting of line defects formed by N missing holes in a 2D PhC hexagonal lattice, have been employed in many important experiments in nano-photonics and quantum physics, in particular on single-photon sources [5

5. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]

], single-photon transfer [14

14. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

], and PhC bandgap microlasers [7

7. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]

] [8

8. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]

]. More recently, long (10-20 unit cells) 1D-like LN cavities have been identified as good candidates for producing extremely high spontaneous-emission enhancement factors, realizing “on chip” single-photon guns [2

2. V. S. C. Manga Rao and S. Hughes, “"Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient "on chip" single photon gun,” Phys. Rev. Lett. 99, 193101 (2007).

]. A PhC waveguide-based single-photon source has also been demonstrated experimentally [17

17. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef] [PubMed]

], however a lack of site and photonic-wavefunction control makes it difficult to conclude whether the device performance was based on quasi-1D modes or rather on localized photonic states.

In the present work, we present evidence for the transition from fully confined photonic cavities to a 1D PhC waveguide in a series of LN cavities of increasing length (N = 3 to 35). By expressing the LN cavity modes as a linear combination of the 1D Bloch eigenstates of the corresponding W1 waveguide, we show that in an ideal case the spectra of the confined modes approach the 1D dispersion starting from N~35. However, fabrication-induced disorder limits the extension of the photon wavefunction to shorter lengths. Using finite-difference (FD) computations and spatially resolved micro-photoluminescence (PL) measurements, we directly probe this localization and its dependence on the photon mode index.

Experimentally, the mode spectra of LN cavities with N=3,6,11,21 and 35 were characterized using GaAs membrane structures incorporating InGaAs/GaAs site-controlled (lateral alignment precision ~40nm) V-groove QWRs serving as an internal light source (ILS) (see [19

19. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007). [CrossRef]

] for fabrication details). A scanning-electron-microscope (SEM) view of an L11 sample is shown in Fig. 1(c). Post-processing by digital etching [20

20. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]

] was performed to enhance the cavity Q-factor and the QWRs were designed to have their peak PL spectrum near ~890 nm at 10K. The micro-PL spectra show a series of cavity modes superimposed on the QWR background emission [Fig. 2(c)]. The measured Q-values ranged from 3000 (L3, M0 state) up to ~7500 (in L21, L35). The measured mode wavelengths differ from the calculated ones by ≈ 13nm, mainly due to a difference of ~2 nm in the lattice constant (yielding Δλ~+8 nm) and to fluctuations in the hole diameter along z (reduced diameter at the half-slab level giving Δλ~+5 nm) as compared with the design target. However, since such a small offset does not involve an appreciable spectrum stretching, the experimental spectra and the N-dependence match the computations quite well.

In order to relate the spectra of the LN cavities to those of a W1 waveguide and gain more insight into the formation of 1D photonic bands, it is possible to expand the m-th mode of the LN cavity, ENm(x,y), in terms of the Bloch states of the W1 structure, Ewkx(x,y)eikxx:

ENm(x,y)=1Vkx0,2πacwkxm,NEwkx(x,y)eikxx.
(1)

Here, V is the domain volume, and the sum was centered on the minimum of the W1 band, kx=π/a. Since we are focusing on the odd cavity modes, only Bloch modes belonging to the corresponding odd band of the waveguide [see Fig. 1(b)] were taken into account. For the cavity modes studied in the present work, the cwkxm,N coefficients can be written as [21

21. M. Felici, K. A. Atlasov, and E. Kapon, in preparation.

]

cwkxm,N=GFT{Eym,N(x)}|kx+G×(WGwkx)*.
(2)

Eym,N(x) is the y-component of ENm(x,y) integrated over y, G=±2πan (for n=0,1,…,∞) is the one-dimensional reciprocal lattice vector, and the WGwkx term only depends on the W1 dielectric constant and eigenstates. In principle, Eqs. (1-2) are valid for any LN cavity mode possessing the right parity (i.e., odd for reflections about the xz plane); only for very small values of N (approximately N<3) the cavity modes become too localized to be expressed in terms of a small number of “extended” photonic crystal states, such as the waveguide eigenmodes. In these cases, the sum in Eq. (1) has to be modified to include a larger number of PhC bands. The cwkxm,N coefficients provide the necessary connection between the m-th mode of the LN cavity –via the mode’s 1D Fourier transform, FT{Eym,N(x)}– and the eigenmodes of the corresponding PhC W1 waveguide –via the WGwkx term. It should be noted that the latter term is completely independent of the cavity length, so that the evolution of the cavity modes with increasing N is fully determined by FT{Eym,N(x)}. This evolution is quite evident if we superimpose FT{Eym,N(x)} to the waveguide dispersion for the different LN cavities, as shown in Fig. 3
Fig. 3 (Color online) Comparison of the W1 dispersion (black line) with the 1D Fourier transform FT{Eym,N(x)} (colormap) of the confined modes of the L3, L11, L21 and L35 cavities (for the latter, only the first 16 modes are shown). PhC bands are shown as grey-shaded regions, and the light line is in green.
. Even for the smallest values of N, all cavity modes localize around particular kx-values, and with increasing cavity length their distributions converge to discrete values of the W1 band. Hence, the cavity modes shift rapidly in energy down to a certain level [compare also to Figs. 2(b) and 2(d)], which, for the ground state (M0) is near the minimum of the dispersion curve. Starting from this point (i.e., for N~35 in the ideal case), any additional shift of M0 is negligible, and the state practically becomes 1D.

Though, in general, the experiment confirms these tendencies, relatively long cavities (N= 21, 35) show evidence for PhC structural disorder in the measured spectra (for example, compare Fig. 2(c), and Fig. 2(a) for L35). In order to get further insight, we performed 2D-FD numerical computations based on a realistic dielectric constant imported directly from SEM images of the fabricated samples [see Fig. 4(a)
Fig. 4 (Color online) (a) Top-view SEM image of the measured L35 cavity (close-up of the cavity termination). (b) Mode patterns (Ey component) obtained from 2D-FD computations using the SEM image shown in panel (a) (lowest-order modes shown). (c) Same as Fig. 3, for the first 14 modes of the measured L35 cavity. The zoomed part shows the lowest-order states compared to an ideal L35-cavity structure (both with a=196 nm).
]. Notwithstanding a good PhC quality (a preliminary statistical analysis suggests a relative standard deviation smaller than 3% for both the hole position and radius), in the fabricated L35 cavity the computed near-field patterns are clearly localized in different sections [Fig. 4(b)]. Analyzing the field patterns along the lines followed for the ideal cavities, we observe that such spatial localization manifests itself through a broadening of the mode field distributions in kx-space, and hence in a blueshift [see Fig. 4(c)] arising from the random-disorder potential. For the localized modes the effective cavity length is thus shorter, e.g., for the M0 mode of the fabricated L35 the effective cavity length is actually similar to that of an ideal L11. Since the different modes are localized at different sections of the cavity, it is possible to probe the localization directly using spatially resolved micro-PL spectroscopy of these PhC structures. Figure 5
Fig. 5 (Color online) (a) Micro-PL intensity profile of the first 6 cavity modes across the measured L35 cavity. (b) Representative micro-PL spectra excited by a ~1.5µm wide laser spot at different positions in the cavity. The spectra are vertically shifted for clarity. Excitation conditions: pulsed (3 ps, 78 MHz), 700 nm, 12.5 μW. T=50K. (c) Top-view SEM image of the measured L35 cavity [this image was used to compute the modes shown in Fig. 4(a)].
shows the measured micro-PL spectra of an L35 cavity excited with a ~1.5µm wide laser spot at several positions along its axis. The different modes in each spectrum are identified based on their spectral position withthe aid of the calculated spectra (corresponding to the field distributions shown in Fig. 4). As evidenced by the variation of the integrated micro-PL intensity of the first 6 cavity modes as a function of the position of the laser spot within the cavity –displayed in Fig. 5(a)– the relative mode intensities depend strongly on the excitation position, reflecting the localization of the different modes in different sections of the long cavity as predicted by the model calculations. In particular, the fundamental mode M0 is excited most efficiently when the excitation spot is located at the center of the cavity, whereas modes M1 and M2 are best excited when the laser spot is positioned at either extreme end of the cavity. The observed variation in the excitation efficiency of the different modes with the position of the laser spot is qualitatively consistent with the FD-calculated mode patterns [Fig. 4(b)]. It is important to note that a significant localization [bringing also disorder in the mode spectral positions, see Fig. 2(c)] arises only for the lowest-order modes [e.g., from M0 to M3 in Fig. 4(c)]. On the other hand, the higher-order ones (starting from ~M4-M5 for the measured L35) are less disorder-sensitive. This observation reflects the fact that the high-order cavity modes stem mainly from the index-guided W1 states (linear part of the dispersion band, see Fig. 1(b) and Ref [22

22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]

].), which are inherently insensitive to the fine details of the dielectric constant, whereas the photonic gap-guided modes (close to the minimum of the W1 dispersion band) “sense” even slight fabrication-induced PhC-lattice periodicity imperfections [22

22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]

]. Obviously, the mode localization is of crucial importance for applications requiring near-ideal 1D photonic bands, e.g., QD coupling with photonic wires [17

17. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef] [PubMed]

] or 1D polaritons [23

23. G. Dasbach, A. A. Dremin, M. Bayer, V. D. Kulakovskii, N. A. Gippius, and A. Forchel, “Oscillations in the differential transmission of a semiconductor microcavity with reduced symmetry,” Phys. Rev. B 65(24), 2453161–2453166 (2002). [CrossRef]

]. Furthermore, localization is detrimental for applications based upon on-chip photon transfer [14

14. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

], and particularly in the case of a III-V PhC waveguide on Si (where the waveguide dispersion is limited mostly to the gap-guided modes due to the presence of the bonding layer [24

24. Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, R. Raj, G. Roelkens, and D. V. Thourhout, “Hybrid InP-based photonic crystal lasers on silicon on insulators wires,” Appl. Phys. Lett. 95, 201119 (2009). [CrossRef]

]).

In summary, we followed the evolution into a 1D photonic band structure of the fully confined cavity modes of PhC membrane LN cavities of increasing length, both experimentally and in the ideal case. The complete band formation, generally speaking, depends on the spectral width of each cavity mode, which needs to be greater than the spectral mode separation in order to allow for propagation along the axis of the photonic wire. In practice, the observed saturation in the variation of the eigenmode frequencies with increasing N suggests the onset of the formation of a 1D photonic band already for N~35. In addition, we presented direct evidence of disorder-induced photonic mode localization along the cavities, with characteristic localization patterns depending on the mode index. Such weak localization effects limit the formation of fully-extended quasi-1D photon states with predictable mode patterns, and need to be removed in case efficient QD-cavity coupling or photon transfer along the 1D photonic structure is desired, e.g., for applications in on-chip single-photon generation and transfer.

References and links

1.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]

2.

V. S. C. Manga Rao and S. Hughes, “"Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient "on chip" single photon gun,” Phys. Rev. Lett. 99, 193101 (2007).

3.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]

4.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]

5.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]

6.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]

7.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]

8.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]

9.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]

10.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997). [CrossRef]

11.

C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002). [CrossRef] [PubMed]

12.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]

13.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef] [PubMed]

14.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

15.

D. P. Fussell, S. Hughes, and M. M. Dignam, “Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides,” Phys. Rev. B 78(14), 144201 (2008). [CrossRef]

16.

M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66(3), 331031–331034 (2002). [CrossRef]

17.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef] [PubMed]

18.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]

19.

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007). [CrossRef]

20.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]

21.

M. Felici, K. A. Atlasov, and E. Kapon, in preparation.

22.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]

23.

G. Dasbach, A. A. Dremin, M. Bayer, V. D. Kulakovskii, N. A. Gippius, and A. Forchel, “Oscillations in the differential transmission of a semiconductor microcavity with reduced symmetry,” Phys. Rev. B 65(24), 2453161–2453166 (2002). [CrossRef]

24.

Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, R. Raj, G. Roelkens, and D. V. Thourhout, “Hybrid InP-based photonic crystal lasers on silicon on insulators wires,” Appl. Phys. Lett. 95, 201119 (2009). [CrossRef]

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 29, 2009
Revised Manuscript: November 13, 2009
Manuscript Accepted: December 14, 2009
Published: December 22, 2009

Citation
Kirill A. Atlasov, Marco Felici, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon, "1D photonic band formation and photon localization in finite-size photonic-crystal waveguides," Opt. Express 18, 117-122 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  2. V. S. C. Manga Rao and S. Hughes, “"Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: Proposal for an efficient "on chip" single photon gun,” Phys. Rev. Lett. 99, 193101 (2007).
  3. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  4. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]
  5. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96(11), 117401 (2006). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef] [PubMed]
  7. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006). [CrossRef] [PubMed]
  8. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006). [CrossRef] [PubMed]
  9. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]
  10. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network,” Phys. Rev. Lett. 78(16), 3221–3224 (1997). [CrossRef]
  11. C. Monroe, “Quantum information processing with atoms and photons,” Nature 416(6877), 238–246 (2002). [CrossRef] [PubMed]
  12. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997). [CrossRef]
  13. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef] [PubMed]
  14. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]
  15. D. P. Fussell, S. Hughes, and M. M. Dignam, “Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides,” Phys. Rev. B 78(14), 144201 (2008). [CrossRef]
  16. M. Qiu, “Band gap effects in asymmetric photonic crystal slabs,” Phys. Rev. B 66(3), 331031–331034 (2002). [CrossRef]
  17. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett. 101(11), 113903 (2008). [CrossRef] [PubMed]
  18. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  19. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007). [CrossRef]
  20. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]
  21. M. Felici, K. A. Atlasov, and E. Kapon, in preparation.
  22. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  23. G. Dasbach, A. A. Dremin, M. Bayer, V. D. Kulakovskii, N. A. Gippius, and A. Forchel, “Oscillations in the differential transmission of a semiconductor microcavity with reduced symmetry,” Phys. Rev. B 65(24), 2453161–2453166 (2002). [CrossRef]
  24. Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, R. Raj, G. Roelkens, and D. V. Thourhout, “Hybrid InP-based photonic crystal lasers on silicon on insulators wires,” Appl. Phys. Lett. 95, 201119 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited