## Watt-level self-frequency-doubling Nd:GdCOB lasers

Optics Express, Vol. 18, Issue 11, pp. 11058-11062 (2010)

http://dx.doi.org/10.1364/OE.18.011058

Acrobat PDF (726 KB)

### Abstract

Laser-diode (LD) pumped self-frequency doubling (SFD) Nd:GdCa_{4}O(BO_{3})_{3} (Nd:GdCOB) miniature laser was demonstrated. The output power as high as 1.35 W was achieved which is over than five times than previous values for Nd:LnCa_{4}O(BO_{3})_{3} (Ln = Y or Gd) SFD lasers and becomes the highest continuous-wave output power in this field to our knowledge. The maximum optical conversion efficiency is 17%. By comparison, we found that the cutting direction along its optimal phase-matching direction out of the principal planes is the determining factor resulting in this watt-level efficient output power. Different with previous studies, the emission wavelength is centered at about 545 nm. We believed that this efficient laser will become the most competitive one in the existing commercial green lasers, especially in the laser display, medical treatment and spectroscopic analysis etc.

© 2010 OSA

## 1. Introduction

1. J. Capmany, D. Jaque, J. Garcéa Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO_{5}:Nd^{3+},” Appl. Phys. Lett. **72**(5), 531–533 (1998). [CrossRef]

_{3}(BO

_{3})

_{4}(YAB), Nd:LiNbO

_{3}and LnCa

_{4}O(BO

_{3})

_{3}(Ln = Y or Gd) are three most promising series SFD crystal. To our knowledge, the highest-power SFD laser was achieved to be 1.1 W up to now with a Yb:YAB [2

2. P. Dekker, J. M. Dawes, J. A. Piper, Y. G. Liu, and J. Y. Wang, “1.1 W cw self-frequency-doubled diode-pumped Yb:YAl_{2}(BO_{3})_{4} laser,” Opt. Commun. **195**(5-6), 431–436 (2001). [CrossRef]

_{4}O(BO

_{3})

_{3}(Ln = Y or Gd) crystals can be grown by the Czochralski method in large size, and have high nonlinear coefficients, damage threshold and optical gain at 1.06 µm [3

3. G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. **22**(2), 89–94 (2003). [CrossRef]

_{4}O(BO

_{3})

_{3}(Nd:YCOB) and Nd: GdCa

_{4}O (BO

_{3})

_{3}(Nd:GdCOB), the highest SFD lasers were achieved to be 245 mW [4

4. D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. **36**(8), 991–999 (2000). [CrossRef]

5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. **174**(5-6), 471–474 (2000). [CrossRef]

5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. **174**(5-6), 471–474 (2000). [CrossRef]

^{4}F

_{3/2}→

^{4}I

_{11/2}band of Nd ions in the LnCa

_{4}O(BO

_{3})

_{3}was also changed with the temperature, which induce the emission wavelength changed with the pump power [8

8. G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa_{4}O(BO_{3})_{3} lasers: toward green microchip lasers,” J. Opt. Soc. Am. B **17**(9), 1526–1530 (2000). [CrossRef]

8. G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa_{4}O(BO_{3})_{3} lasers: toward green microchip lasers,” J. Opt. Soc. Am. B **17**(9), 1526–1530 (2000). [CrossRef]

9. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd^{3+}:Ca_{4}GdO(BO_{3})_{3} (Nd:GdCOB),” Opt. Mater. **8**(3), 161–173 (1997). [CrossRef]

9. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd^{3+}:Ca_{4}GdO(BO_{3})_{3} (Nd:GdCOB),” Opt. Mater. **8**(3), 161–173 (1997). [CrossRef]

## 2. Experiments

10. S. J. Zhang, Z. X. Cheng, J. H. Lu, G. M. Li, J. R. Lu, Z. S. Shao, and H. C. Chen, “Studies on the e!ective nonlinear coefficient of GdCa_{4}O(BO_{3})_{3} crystal,” J. Cryst. Growth **205**(3), 453–456 (1999). [CrossRef]

## 3. Results and discussions

_{th}) was measured to be 0.29 W, and highest output power was 1.35 W under the pump power of 7.94 W with the optical conversion efficiency of 17%. With a Glan-Thomson prism, the SFD laser was found to be linearly polarized. It can also be found that the SFD green power rose with the increase of the pump power with a quadratic curve. By analyses, it can be found that the fundamental power should be linearly increased with the incident pump power. However the second-frequency-generation (SHG) laser should be quadratic increased with the fundamental laser power. Therefore, it can be easily to understand the SFD laser quadratic increasing with the incident pump power. Removing F, the total output power of fundamental and SFD lasers can be obtained which is also shown in Fig. 2. Under the pump power of 7.94 W, the total output power was achieved to be 1.36 W. It can be seen that, with the increase of the incident pump power, the ratio of the SFD to fundamental output powers raised. The stability of the SFD laser was also measured under the pump power of about 1.03 W which is shown in Fig. 3 . Observed for half an hour, the instability is found to be less than ± 1%. Under this power, the mode size was studied with the knife edge method. The radius is about 2.44 mm with the length of 22.5 cm behind the output face of the SFD crystal, and the M

^{2}value of the SFD laser beam is estimated to be 4.6.

8. G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa_{4}O(BO_{3})_{3} lasers: toward green microchip lasers,” J. Opt. Soc. Am. B **17**(9), 1526–1530 (2000). [CrossRef]

^{4}F

_{3/2}manifold, and its population is favored at high temperature, which induced the 1091 nm mode dominating and generated the SFD yellowish green laser centered at 545 nm.

4. D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. **36**(8), 991–999 (2000). [CrossRef]

6. C. T. Chen, Z. S. Shao, J. Jiang, J. Q. Wei, J. Lin, J. Y. Wang, N. Ye, J. H. Lv, B. C. Wu, M. H. Jiang, M. Yoshimura, Y. Mori, and T. Sasaki, “Determination of the nonlinear optical coefficients of YCa_{4}O(BO_{3})_{3} crystal,” J. Opt. Soc. Am. B **17**(4), 566–571 (2000). [CrossRef]

5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. **174**(5-6), 471–474 (2000). [CrossRef]

2. P. Dekker, J. M. Dawes, J. A. Piper, Y. G. Liu, and J. Y. Wang, “1.1 W cw self-frequency-doubled diode-pumped Yb:YAl_{2}(BO_{3})_{4} laser,” Opt. Commun. **195**(5-6), 431–436 (2001). [CrossRef]

11. D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm froma self-frequency-doubled laser of YAl_{3}BO_{34}:Nd^{3+},” Appl. Phys. Lett. **74**(13), 1788–1790 (1999). [CrossRef]

13. D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl_{3}BO_{34} crystal based on laser oscillation at 1.3 mm,” Appl. Phys. Lett. **75**(3), 326–328 (1999). [CrossRef]

## 4. Conclusion

## Acknowledgement

## References and links

1. | J. Capmany, D. Jaque, J. Garcéa Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO |

2. | P. Dekker, J. M. Dawes, J. A. Piper, Y. G. Liu, and J. Y. Wang, “1.1 W cw self-frequency-doubled diode-pumped Yb:YAl |

3. | G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. |

4. | D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. |

5. | C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. |

6. | C. T. Chen, Z. S. Shao, J. Jiang, J. Q. Wei, J. Lin, J. Y. Wang, N. Ye, J. H. Lv, B. C. Wu, M. H. Jiang, M. Yoshimura, Y. Mori, and T. Sasaki, “Determination of the nonlinear optical coefficients of YCa |

7. | Z. P. Wang, Y. P. Shao, X. G. Xu, J. Y. Wang, Y. G. Liu, J. Q. Wei, and Z. S. Shao, “Determination of the optimum directions for the laser emission, frequency doubling, and self-frequency doubling of Nd:Ca |

8. | G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa |

9. | F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd |

10. | S. J. Zhang, Z. X. Cheng, J. H. Lu, G. M. Li, J. R. Lu, Z. S. Shao, and H. C. Chen, “Studies on the e!ective nonlinear coefficient of GdCa |

11. | D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm froma self-frequency-doubled laser of YAl |

12. | J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB Lasers,” IEEE J. Quantum Electron. |

13. | D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl |

**OCIS Codes**

(190.4400) Nonlinear optics : Nonlinear optics, materials

(190.5940) Nonlinear optics : Self-action effects

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: March 15, 2010

Revised Manuscript: April 20, 2010

Manuscript Accepted: May 7, 2010

Published: May 11, 2010

**Virtual Issues**

Vol. 5, Iss. 10 *Virtual Journal for Biomedical Optics*

**Citation**

Jiyang Wang, Huaijin Zhang, Zhengping Wang, Haohai Yu, Nan Zong, Changqin Ma, Zuyan Xu, and Minhua Jiang, "Watt-level self-frequency-doubling Nd:GdCOB lasers," Opt. Express **18**, 11058-11062 (2010)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11058

Sort: Year | Journal | Reset

### References

- J. Capmany, D. Jaque, J. Garcı́a Solé, and A. A. Kaminskii, “Continuous wave laser radiation at 524 nm from a self-frequency-doubled laser of LaBGeO5:Nd3+,” Appl. Phys. Lett. 72(5), 531–533 (1998). [CrossRef]
- P. Dekker, J. M. Dawes, J. A. Piper, Y. G. Liu, and J. Y. Wang, “1.1 W cw self-frequency-doubled diode-pumped Yb:YAl2(BO3)4 laser,” Opt. Commun. 195(5-6), 431–436 (2001). [CrossRef]
- G. Aka and A. Brenier, “Self-frequency conversion in nonlinear laser crystals,” Opt. Mater. 22(2), 89–94 (2003). [CrossRef]
- D. A. Hammons, M. Richardson, B. H. T. Chai, A. K. Chin, and R. Jollay, “Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers,” IEEE J. Quantum Electron. 36(8), 991–999 (2000). [CrossRef]
- C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000). [CrossRef]
- C. T. Chen, Z. S. Shao, J. Jiang, J. Q. Wei, J. Lin, J. Y. Wang, N. Ye, J. H. Lv, B. C. Wu, M. H. Jiang, M. Yoshimura, Y. Mori, and T. Sasaki, “Determination of the nonlinear optical coefficients of YCa4O(BO3)3 crystal,” J. Opt. Soc. Am. B 17(4), 566–571 (2000). [CrossRef]
- Z. P. Wang, Y. P. Shao, X. G. Xu, J. Y. Wang, Y. G. Liu, J. Q. Wei, and Z. S. Shao, “Determination of the optimum directions for the laser emission, frequency doubling, and self-frequency doubling of Nd:Ca4ReO(BO3)3 (Re = Gd, Y) crystals,” Acta Phys. Sin. 51, 2029–2033 (2002).
- G. Lucas-Leclin, F. Augé, S. C. Auzanneau, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, “Diode-pumped self-frequency-doubling Nd:GdCa4O(BO3)3 lasers: toward green microchip lasers,” J. Opt. Soc. Am. B 17(9), 1526–1530 (2000). [CrossRef]
- F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997). [CrossRef]
- S. J. Zhang, Z. X. Cheng, J. H. Lu, G. M. Li, J. R. Lu, Z. S. Shao, and H. C. Chen, “Studies on the e!ective nonlinear coefficient of GdCa4O(BO3)3 crystal,” J. Cryst. Growth 205(3), 453–456 (1999). [CrossRef]
- D. Jaque, J. Capmany, and J. García Solé, “Continuous wave laser radiation at 669 nm froma self-frequency-doubled laser of YAl3BO34:Nd3+,” Appl. Phys. Lett. 74(13), 1788–1790 (1999). [CrossRef]
- J. Bartschke, R. Knappe, K.-J. Boller, and R. Wallenstein, “Investigation of efficient self-frequency-doubling Nd:YAB Lasers,” IEEE J. Quantum Electron. 33(12), 2295–2300 (1997). [CrossRef]
- D. Jaque, J. Capmany, and J. García Solé, “Red, green, and blue laser light from a single Nd:YAl3BO34 crystal based on laser oscillation at 1.3 mm,” Appl. Phys. Lett. 75(3), 326–328 (1999). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.