OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11444–11449
« Show journal navigation

Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching

Yang Tan and Feng Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11444-11449 (2010)
http://dx.doi.org/10.1364/OE.18.011444


View Full Text Article

Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a new, simple method to fabricate optical ridge waveguides in a z-cut LiNbO3 wafer by using proton implantation and selective wet etching. The measured modal field is well confined in the ridge waveguide region, which is also confirmed by the numerical simulation. With thermal annealing treatment at 400°C, the propagation loss of the ridge waveguides is determined to be as low as ~0.9 dB/cm. In addition, the measured thermo-optic coefficients of the waveguides are in good agreement with those of the bulk, suggesting potential applications in integrated photonics.

© 2010 OSA

1. Introduction

2. Experiments in details

The z-cut congruent LiNbO3 wafers are cut to be with dimensions of 10(x) × 10(y) × 1.5(z) mm3 and optically polished. Figure 1
Fig. 1 Schematic plots of the ridge waveguide fabrication process. The inset shows the microscope image of the ridge waveguide cross section.
shows the schematic plots of the ridge waveguide fabrication process. A Cr film with thickness of 48 nm is deposited by sputtering on the surface of the negative z face (-z domains) [Fig. 1(a)]. The protons at energies of (475 + 500) keV and fluences of (3.6 + 6) × 1016 cm−2 are implanted into LiNbO3 wafer with this Cr-film mask, forming low-index optical barriers at the end of ions’ track (~3.5 μm beneath the sample surface) via the nuclear energy deposition [Fig. 1(b)]. After implantation, straight stripes with width of 10μm are defined by lithography technique with photomask and etched by a cerium sulfate solution. The remaining photoresist was removed by acetone [Fig. 1(c)]. Then the sample is immerged into an etchant solution [60 ml HF (40%), 39 ml HNO3 (90%) and 5 ml ethanol (98%)] at 28°C. After 8 hours, the regions without the protection of Cr-stripes are removed by the acid owing to the selective etching of -z domains. The vertical depth of the etched regions is ~15 μm. Therefore the ridge waveguides are fabricated beneath the Cr stripes [Fig. 1(d)]. After the removal of Cr stripes, the waveguide sample is annealed at 400°C for 30 min in air to improve the guiding properties [Fig. 1(e)]. The inset photograph shows the microscope image of the ridge waveguide cross section. As it is indicated, the shape of the transverse cross section is approximately trapezoidal rather than rectangular, which is attributed to the etching behavior of the LiNbO3 in such acid.

The TO coefficients of the waveguides are measured and compared with those of the bulk by using prism coupling method [29

29. W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009). [CrossRef] [PubMed]

]. This technique has been successfully applied to determine the TO coefficients of a SBN thin-film waveguide [29

29. W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009). [CrossRef] [PubMed]

]. During the measurement, the sample is put on a heater which is controlled by a high-accuracy digital power controller. The sample temperature is monitored by a thermal detector adhered to the surface of the LiNbO3 wafer. A heatconducting silicon wafer is used as an adhesive between heater, detector and the sample to achieve good thermal contact. In this work, the changes of refractive index are recorded when the sample is heated up to 120°C from room temperature.

3. Results and discussion

The ion implantation generates defects and damages inside the crystal, which is considered to be of great importance to the waveguide formation and modifications of the substrate. For light-ion-implanted LiNbO3 crystals, the most-damaged regions are usually located at the end of ion range, which is mainly caused by the nuclear energy deposition of incident ions on the original lattices. Such damaged region is the so-called “optical barrier” with reduced refractive index, which confines the light propagation together with the surface cladding (air). Figure 2
Fig. 2 The defect concentration n da (solid line) and relative displacement of the original atoms n dpa (dashed line) for the as-implanted LiNbO3 implanted by protons at energies of (475 + 500) keV and fluences of (3.6 + 6) × 1016 cm−2.
shows the defect concentration (n da) (calculated by the method in [30

30. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009). [CrossRef]

]) and the depth distribution of the primary displacement (n dpa) (obtained by SRIM 2008 calculation [31

31. J. F. Ziegler, computer code, SRIM http://www.srim.org.

]) in the as-implanted LiNbO3 crystals induced by the proton beams. As one can see, the incident protons generate a damaged layer at depth of ~3.5 μm beneath the sample surface, i.e., in the barrier region. For this damaged layer the maximum n da ≈0.11 at n dpa ≈0.08 dpa. With such defect concentration it is expected that the etching rate in LiNbO3 is still very low because the effect in the acid from the ion beam enhanced etching is almost negligible [32

32. F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006). [CrossRef]

]. This is also confirmed by the microscope image of the ridge waveguide cross section [inset of Fig. 1], which does not show any side etching effect in the barrier regions.

The propagation losses of the post-annealed ridge waveguides (i.e., at 400°C for 30 min) are determined to be as low as ~0.9 dB/cm at 633 nm. Further reduction of the attenuation values can be realized by optimizing the annealing conditions, or/and adjusting the dimension parameters of the ridge structures.

It should be pointed out that the defect concentration plays an important role for both the ridge waveguide formation and the TO effects. The proton implantation does not create enough high defects in the whole implanted regions, because the in the waveguide, the electronic damage could be neglected (owing to the small values of electronic stopping power Se) whilst the nuclear damage in the barriers is not enough high for enhanced etching or slicing in the acid. In addition, the TO properties have been well preserved in the waveguides also owing to the very slight modifications of the original lattices by the protons. We have also found that, for heavy ion implanted LiNbO3 waveguides, the TO coefficients are considerably modified when Se is above 2.2keV/nm, whilst keep the same with those of the bulks in cases of Se<2.2keV/nm. In this sense, there may be a fine bridge between the formation of ridge waveguides and the maintenance of the TO effects of the bulks by using implantation of protons instead of other ions.

4. Summary

We presented a simple method to fabricate ridge waveguides in LiNbO3 crystals at the surface with –z domains by combination of proton implantation and selective wet etching. The formed ridge waveguides with well-defined guided modes and relatively low propagation losses exhibited acceptable guiding properties. In addition, we found that the TO properties are well preserved in the waveguides with respect to the bulks, which suggests potential applications of the formed LiNbO3 waveguides as integrated TO photonic elements.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Nos. 10925524 and 10875075) and the 973 Project (No. 2010CB832906).

References and links

1.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004). [CrossRef]

2.

M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009). [CrossRef]

3.

W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008). [CrossRef]

4.

G. Lifante, Integrated Photonics: Fundamentals ‖Wiley, Atrium, 2008|.

5.

M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009). [CrossRef]

6.

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]

7.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]

8.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]

9.

A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009). [CrossRef]

10.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]

11.

P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006). [CrossRef] [PubMed]

12.

P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation” (Cambridge Univ. Press, Cambridge, 1994).

13.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]

14.

F. Schrempel, Th. Gischkat, H. Hartung, Th. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009). [CrossRef] [PubMed]

15.

M. Levy, R. M. Osgood Jr, R. Liu, L. E. Cross, G. S. Cargill III, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998). [CrossRef]

16.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009). [CrossRef]

17.

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]

18.

M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008). [CrossRef]

19.

H. Hartung, E.-B. Kley, A. Tünnermann, Th. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008). [CrossRef] [PubMed]

20.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005). [CrossRef]

21.

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999). [CrossRef]

22.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007). [CrossRef]

23.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]

24.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]

25.

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009). [CrossRef]

26.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]

27.

D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992). [CrossRef] [PubMed]

28.

R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]

29.

W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009). [CrossRef] [PubMed]

30.

M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009). [CrossRef]

31.

J. F. Ziegler, computer code, SRIM http://www.srim.org.

32.

F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006). [CrossRef]

33.

M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989). [CrossRef]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 23, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 11, 2010
Published: May 14, 2010

Citation
Yang Tan and Feng Chen, "Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching," Opt. Express 18, 11444-11449 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004). [CrossRef]
  2. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, “Optical cleaning of congruent lithium niobate crystals,” Nat. Photonics 3(9), 510–513 (2009). [CrossRef]
  3. W. Sohler, H. Hu, R. Ricken, V. Quiring, Ch. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated Optical Devices in Lithium Niobate,” Opt. Photon. News 19(1), 24–31 (2008). [CrossRef]
  4. G. Lifante, Integrated Photonics: Fundamentals ‖Wiley, Atrium, 2008|.
  5. M. Quintanilla, E. Martín Rodríguez, E. Cantelar, D. Jaque, J. A. Sanz-García, G. Lifante, and F. Cussó, “Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides,” J. Lumin. 129(12), 1698–1701 (2009). [CrossRef]
  6. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]
  7. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  8. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  9. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009). [CrossRef]
  10. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]
  11. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006). [CrossRef] [PubMed]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation” (Cambridge Univ. Press, Cambridge, 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion implanted optical waveguides in optical materials: a review,” Opt. Mater. 29(11), 1523–1542 (2007). [CrossRef]
  14. F. Schrempel, Th. Gischkat, H. Hartung, Th. Höche, E.-B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009). [CrossRef] [PubMed]
  15. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, “Fabrication of single-crystal lithium niobate thin films by crystal ion slicing,” Appl. Phys. Lett. 73(16), 2293 (1998). [CrossRef]
  16. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced Lithium Niobate Thin Films for Active Photonic Devices,” Opt. Mater. 31(7), 1054–1058 (2009). [CrossRef]
  17. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008). [CrossRef] [PubMed]
  18. M. Bianconi, F. Bergamini, G. G. Bentini, A. Cerutti, M. Chiarini, P. De Nicola, and G. Pennestrì, “Modification of the etching properties of x-cut Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 266(8), 1238–1241 (2008). [CrossRef]
  19. H. Hartung, E.-B. Kley, A. Tünnermann, Th. Gischkat, F. Schrempel, and W. Wesch, “Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching,” Opt. Lett. 33(20), 2320–2322 (2008). [CrossRef] [PubMed]
  20. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005). [CrossRef]
  21. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, “Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion,” Appl. Phys. Lett. 74(10), 1487–1488 (1999). [CrossRef]
  22. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007). [CrossRef]
  23. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]
  24. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  25. Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009). [CrossRef]
  26. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986). [CrossRef]
  27. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett. 17(5), 329–330 (1992). [CrossRef] [PubMed]
  28. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  29. W. C. Liu, C. L. Mak, and K. H. Wong, “Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator,” Opt. Express 17(16), 13677–13684 (2009). [CrossRef] [PubMed]
  30. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of lithium niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009). [CrossRef]
  31. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  32. F. Schrempel, Th. Gischkat, H. Hartung, E.-B. Kley, and W. Wesch, “Ion beam enhanced etching of LiNbO3,” Nucl. Instrum. Methods Phys. Res. B 250(1-2), 164–168 (2006). [CrossRef]
  33. M. Aillerie, M. D. Fontana, F. Abdi, C. Carabatos‐Nedelec, N. Theofanous, and G. Alexakis, “Influence of the temperature-dependent spontaneous birefringence in the electro-optic measurements of LiNbO3,” J. Appl. Phys. 65(6), 2406–2408 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited