OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11650–11656
« Show journal navigation

Hybrid planar microresonators with organic and InGaAs active media

J. R. Mialichi, A. Camposeo, L. Persano, L. A. M. Barea, P. Del Carro, D. Pisignano, and N. C. Frateschi  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11650-11656 (2010)
http://dx.doi.org/10.1364/OE.18.011650


View Full Text Article

Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors report on the fabrication of hybrid planar micro-resonators based on InGaAs microdisks with an evaporated organic material. Samples of InGaAs grown on InP(100) substrates are obtained by Chemical Beam Epitaxy, and microdisks of InGaAs with different diameters are fabricated by focused ion beam. The hybrid disks are obtained by the subsequent evaporation of 8-hydroxyquinoline aluminium doped with 4-Dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran on the InGaAs microdisks. The devices, characterized by micro- and confocal photoluminescence imaging and spectroscopy, exhibit emission around 650 nm, from the organic material for disks with different radius. Finally, simultaneous emission in the visible and at whispering gallery resonant modes in the 1350-1450 nm range are observed due to excitation transfer to InGaAs. These devices open the possibility to combine the flexibility of organics with the high gain of III-V compounds for wavelength down conversion and telecom applications.

© 2010 OSA

1. Introduction

Here we report on hybrid micro-resonators with simultaneous visible and infra-red emission. We fabricate microdisks with different diameters from InGaAs material grown on InP(100) substrate by Chemical Beam Epitaxy (CBE). The InGaAs layer is compressively strained by ~0.4% with respect to InP. The organic system, 8-hydroxyquinoline aluminium (Alq3) doped with 4-Dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) is deposited on the microdisks by thermal evaporation. Two cases are analyzed. In the first case (i), a bulk layer of SiO2 is deposited on the InGaAs microdisk before depositing the Alq3:DCM in order to study the effects of the cavity size on the organic emission. A blue-shift in the emission is observed as the disk size is reduced. In the second case (ii), the Alq3:DCM is deposited directly on the InGaAs microdisks to investigate the light coupling between the organic layer and the InGaAs substrate. A simultaneous emission at 660 nm and 1350-1450 nm is observed, due to the excitation transfer to the InGaAs material.

2. Fabrication of microdisks

While the most of reported microdisk structures based on organic light-emitting materials are realized by means of standard photolithography [18

18. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]

,21

21. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef] [PubMed]

23

23. R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004). [CrossRef]

], we first fabricate inorganic pedestals to deposit Alq3:DCM afterwards. Samples of InGaAs are grown by CBE on InP(100) substrates using trimethylindium, triethylgallium, AsH3 and PH3 precursors. Initially, 200-nm-thick InP buffer is grown on an oriented InP(100) substrate at 520°C, followed by 1000-nm-thick InGaAs grown at 530°C. After CBE growth, disks of different diameters (38, 26 and 18 µm) are obtained. The processing steps consist essentially of an InGaAs selective wet-etching (H2SO4:H2O2:H2O) resulting in cylinders with vertical walls, followed by InP selective wet-etching (HCl: H3PO4) for the pedestal formation. Pedestal heights of 4-8 µm are achieved after 30-60s of InP selective wet-etching. Disks with diameters of 2, 4 and 8 µm are obtained by focused ion beam (FIB) at the edge of the samples.

Figures 1a
Fig. 1 (a) 18 µm-diameter disk lateral view (b) 26 µm-diameter disk top view (c) 4 µm-diameter posts at the edge of the sample and (d) higher magnification of one of the posts of (c).
and 1b show the lateral and top view of a microdisk with 18 and 26 µm of diameter, respectively. Notice that the walls of the disk are not vertical due to the InGaAs selective wet-etching that tends to stop at the (111)A planes. This certainly influences the InGaAs resonator, but does not significantly affect the organic material deposition. Improvement for the InGaAs profile can be achieved with dry etching before InP selective etching. Figures 1c and 1d show microposts with diameters of 4 µm, realized at the edge of the sample by a dual-beam FIB equipment with scanning electron microscopy capability. FIB milling is performed using a Ga+ beam current of 3 nA accelerated at 30 kV during 12 minutes. Due to the reduced size of the posts, InP selective wet-etching is not carried out on these samples.

Two cases are investigated. In the first case, a bulk layer of SiO2 (800 nm) is deposited on the InGaAs microdisk before depositing the organic thin film. The SiO2 layer is deposited by a Temescal Supersource 2 electron-beam gun system, in an oxygen atmosphere (≅2.4 × 10−4 mbar) using 99.9% purity SiO2 disks (Leybold, Germany) as source materials. The chamber is at room temperature (about 20 °C) at the beginning of the deposition, reaching less than 60 °C at the end of the process. The organic thin film is then deposited on SiO2 layer by thermal evaporation using a PVD75 system from Kurt J. Lesker. A 300 nm thick layer of Alq3 doped with DCM (2% in ww) is evaporated at pressure of 4-5 × 10−7 mbar and a constant deposition rate of 1.5 Å/s, monitored by a quartz gold-coated crystal microbalance. In the second case, a 300 nm thick film of Alq3:DCM is directly deposited onto the InGaAs microdisk under the same evaporation conditions.

3. Results and discussion

PL micrographs of the samples are obtained by using a confocal microscope (FV1000, Olympus), exciting the samples with the 488 nm line of an Ar ion laser. PL spectroscopy measurements of the samples with the SiO2 layer are performed using the third harmonic of a Q-switched neodymium-doped yttrium aluminum garnet pulsed laser (Alphalas Gmbh, λ = 355nm) with a spotlight of about 20 µm, pulse duration of 0.6 ns and repetition rate of 100 Hz. The pulse energy is kept constant at 0.2 μJ. The disk emission is collected by an optical-fiber coupled to a monochromator (iHR320, Jobin Yvon), equipped with a Charge Coupled Device for detection (1024 × 256 pixel, Simphony, Jobin Yvon). The measurements are carried out at room temperature with a spectral resolution of 0.2 nm. As the SiO2 index refraction (1.46 at 630 nm) is lower than that of Alq3:DCM [16

16. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]

], there is a reduced coupling of the light emitted by the organic layer to the InGaAs disks.

Figure 2
Fig. 2 Confocal PL micrographs of Alq3:DCM deposited on InGaAs disks of (a) 38 µm, (b) 26 µm, and (c) 8 µm-diameter.
shows confocal PL images of disks with 38, 26 and 8 µm of diameter (2R) with 300 nm-thick film of Alq3:DCM over their surfaces. The organic film is quite homogeneous and uniform. The underneath pedestals can be visualized due to the index refraction differences of the materials. Figure 3
Fig. 3 Normalized PL curves of Alq3:DCM deposited on microdisks with different diameters. The laser beam power is kept constant.
shows instead the normalized PL spectral emission curves of Alq3:DCM deposited on SiO2 layers on the top of InGaAs disks. PL measurements on the disks show peaks at 664 nm, 651 nm, and 648 nm for diameters of 38 μm, 26 μm e 8μm, respectively. A blue-shift of the emission from the organic material is observed upon decreasing the disk diameter.

We observe that the blueshift increases as the laser spot approaches the disk diameter value of 26 μm. As the disk becomes smaller than the spot area very small change in the blueshift is observed. Therefore, pumping density must play an important rule in the blueshift. The absorbed pump energy density increases as the disk diameter decreases with a maximum when the laser spot maches the disk diameter. Higher absorbed pump energy density leads to higher population of the levels which in turn causes a larger blue-shift for the transitions. This effect is similar to band filing in semiconductors. As the disk diameter is further reduced, there is essentially no change in pump density and, therefore, negligible change in the blueshift.

Alq3 doped with DCM provides an excellent light-emitting and gain media [24

24. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]

], in which the maximum absorbance of the DCM is centered at 530 nm [25

25. S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998). [CrossRef]

]. The organic layer thickness was designed to absorb almost all pumping light. We measure an absorption coefficient of 2 × 105 cm−1 for a 300 nm-thick Alq3:DCM film at the excitation wavelength of 533 nm (the organic film transmits 0.2% of the incident light). In this way, 300-nm-thick films of Alq3:DCM may avoid a significant direct excitation of the InGaAs layer. Thicker layers will result in non efficient pumping of the organic layer. Thinner layer obviously would allow direct pumping of the InGaAs disk. PL measurements of samples without SiO2 are performed by exciting sample by a diode laser at 533 nm and these measurements, shown in the Fig. 4
Fig. 4 PL spectral emission curves of Alq3:DCM deposited on InGaAs disks (a) in the visible region for the 26 μm disk and (b) in the infrared region for the 26 and 38 μm disks. Both spectra are averaged 10 times. Inset in (b) shows the zoomed peak region of the spectrum for the 26 μm disk.
, are collected at room temperature, by means of two different spectrometers, i.e. a Ocean Optics, model (HR2000) with resolution of 1 nm in the visible region, together with an Optical-Spectrum Analyzer, model HP 70950B with resolution of 0.8 nm in the infrared. The laser spotlight used in this set-up is approximately 25 μm. Disks with diameter smaller than 25 μm could allow lateral pumping of the InGaAs material and provides no increase in pumping density. Disks of 26 and 38 μm diameters were measured. PL spectra, shown in Fig. 4b of the 38-μm-diameter disk shows a broad emission centered at 1430 nm with no sign of resonant modes. This is expected since there is a highly absorbing unpumped 6 μm wide ring near the edge of the disk where the WGM modes should be a maximum. Therefore, in the following, we restricted our study to the 26 μm disk.

Based on the absorption coefficient of the polymer we estimate that 1.7 μW of the incident light excites the InGaAs disk for the 1.2 mW pumping power. The measured integrated power irradiated by the InGaAs disk of 26 μm was 6.7 × 10−2 μW. Our single mode fiber collects radial emission from approximately 2 μm length of the disk perimeter. Therefore, we can estimate approximately 2.8 μW of radial emission. Therefore, even assuming only radial emission and 100% efficiency of the entire system, it is impossible to neglect radiative and/or non-radiative pumping from the organic layer. In terms of the ratio between non-radiative and radiative pumping, we believe that the last is more important. If non-radiative pumping was more important we should observe no considerable difference between the InGaAs emission from the disks with 26 μm and 38 μm diameters since carrier diffusion in the InGaAs layer would lead to more uniform pumping at the edge.

4. Conclusion

Acknowledgments

The authors acknowledge the Brazilian research agencies CNPQ and FAPESP. The Brazilian authors acknowledge the CEPOF and INCT-FOTONICOM for their experimental and financial support.

References and links

1.

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996). [CrossRef]

2.

J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008). [CrossRef]

3.

U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994). [CrossRef] [PubMed]

4.

Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993). [CrossRef]

5.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]

6.

L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620. [PubMed]

7.

J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007). [CrossRef] [PubMed]

8.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996). [CrossRef]

9.

D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]

10.

M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000). [CrossRef]

11.

F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003). [CrossRef]

12.

E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008). [CrossRef] [PubMed]

13.

C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006). [CrossRef]

14.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990). [CrossRef]

15.

N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996). [CrossRef]

16.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]

17.

L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006). [CrossRef]

18.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]

19.

M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007). [CrossRef]

20.

N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002). [CrossRef] [PubMed]

21.

M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef] [PubMed]

22.

S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998). [CrossRef]

23.

R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004). [CrossRef]

24.

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]

25.

S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998). [CrossRef]

26.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005). [CrossRef]

27.

G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]

28.

D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999). [CrossRef]

29.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008). [CrossRef]

30.

S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010). [CrossRef] [PubMed]

31.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009). [CrossRef] [PubMed]

32.

S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009). [CrossRef]

33.

A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008). [CrossRef]

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(250.3680) Optoelectronics : Light-emitting polymers

ToC Category:
Integrated Optics

History
Original Manuscript: March 5, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 12, 2010
Published: May 18, 2010

Citation
J. R. Mialichi, A. Camposeo, L. Persano, L. A. M. Barea, P. Del Carro, D. Pisignano, and N. C. Frateschi, "Hybrid planar microresonators with organic and InGaAs active media," Opt. Express 18, 11650-11656 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644–653 (1996). [CrossRef]
  2. J. R. Mialichi, L. A. M. Barea, A. A. von Zuben, and N. C. Frateschi, “Observation of resonance modes in InAs/InGaAsP/InP quantum dot microdisk resonators,” ECS Trans. 14(1), 505–509 (2008). [CrossRef]
  3. U. Mohideen, R. E. Slusher, F. Jahnke, and S. W. Koch, “Semiconductor microlaser linewidths,” Phys. Rev. Lett. 73(13), 1785–1788 (1994). [CrossRef] [PubMed]
  4. Y. Yamamoto and R. Slusher, “Optical processes in microcavities,” Phys. Today 46(6), 66–73 (1993). [CrossRef]
  5. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]
  6. L. Raleigh, “The Problem of the Whispering Gallery,” in Scientific Papers (Cambridge Univ. Press, 1912), Vol. 5, pp. 617–620. [PubMed]
  7. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007). [CrossRef] [PubMed]
  8. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996). [CrossRef]
  9. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]
  10. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12(22), 1655–1668 (2000). [CrossRef]
  11. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, and I. Stensgaard, “Properties of large organic molecules on metal surfaces,” Prog. Surf. Sci. 71(5-8), 95–146 (2003). [CrossRef]
  12. E. Mele, A. Camposeo, C. De Marco, L. Persano, R. Cingolani, and D. Pisignano, “Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures,” Nanotechnology 19(33), 335301 (2008). [CrossRef] [PubMed]
  13. C. Santato, F. Cicoira, P. Cosseddu, A. Bonfiglio, P. Bellutti, M. Muccini, R. Zamboni, F. Rosei, A. Mantoux, and P. Doppelt, “Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer,” Appl. Phys. Lett. 88(16), 163511 (2006). [CrossRef]
  14. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990). [CrossRef]
  15. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996). [CrossRef]
  16. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]
  17. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121111 (2006). [CrossRef]
  18. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in pi-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]
  19. M. Punke, S. Mozer, M. Stroisch, M. P. Heinrich, U. Lemmer, P. Henzi, and D. G. Rabus,“Coupling of organic semiconductor amplified spontaneous emission into polymeric single-mode waveguides patterned by deep-UV irradiation,” IEEE Photon. Technol. Lett. 19(2), 61–63 (2007). [CrossRef]
  20. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295(5559), 1506–1508 (2002). [CrossRef] [PubMed]
  21. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef] [PubMed]
  22. S. V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T. Masuda, K. Yoshino, and Z. V. Vardeny, “Microlasers and micro-LEDs from disubstituted polyacetylene,” Adv. Mater. 10(11), 869–872 (1998). [CrossRef]
  23. R. C. Polson and Z. V. Vardeny, “Directional emission from asymmetric microlaser resonators of pi-conjugated polymers,” Appl. Phys. Lett. 85(11), 1892–1894 (2004). [CrossRef]
  24. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]
  25. S. R. Forrest, P. E. Burrows, V. Bulovic, V. Kozlov, Z. Shen, and M. E. Thompson, “Thin film organic light emitting devices and lasers,” Mater. Lett. 34(3-6), 103–110 (1998). [CrossRef]
  26. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87(10), 103505 (2005). [CrossRef]
  27. G. Heliotis, G. Itskos, R. Murray, M. D. Dawson, I. M. Watson, and D. D. C. Bradley, “Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer,” Adv. Mater. 18(3), 334–338 (2006). [CrossRef]
  28. D. Basko, G. C. La Rocca, F. Bassani, and V. M. Agranovich, “Forster energy transfer from a semiconductor quantum well to an organic material overlayer,” Eur. Phys. J. B 8(3), 353–362 (1999). [CrossRef]
  29. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, D. G. Lidzey, and M. Henini, “Nonradiative exciton energy transfer in hybrid organic-inorganic heterostructures,” Phys. Rev. B 77(19), 193402 (2008). [CrossRef]
  30. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C.-H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602–606 (2010). [CrossRef] [PubMed]
  31. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent enhancement in hybrid nanocrystal quantum-dot p-i-n photovoltaic devices,” Phys. Rev. Lett. 102(7), 077402 (2009). [CrossRef] [PubMed]
  32. S. Chanyawadee, R. T. Harley, D. Taylor, M. Henini, A. S. Susha, A. L. Rogach, and P. G. Lagoudakis, “Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices,” Appl. Phys. Lett. 94(23), 233502 (2009). [CrossRef]
  33. A. A. R. Neves, A. Camposeo, R. Cingolani, and D. Pisignano, “Interaction scheme and temperature behavior of energy transfer in a light-emitting inorganic-organic composite system,” Adv. Funct. Mater. 18(5), 751–757 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited