OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13396–13401
« Show journal navigation

Plasmonic electromagnetically-induced transparency in symmetric structures

Xingri Jin, Yuehui Lu, Haiyu Zheng, YoungPak Lee, Joo Yull Rhee, and Won Ho Jang  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13396-13401 (2010)
http://dx.doi.org/10.1364/OE.18.013396


View Full Text Article

Acrobat PDF (1611 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broken symmetry is generally believed to be a prerequisite for plasmonic electromagnetically-induced transparency (EIT), since the asymmetry allows the excitation of the otherwise forbidden dark mode. Nevertheless, according to the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT, we show that plasmonic EIT can be achieved even in symmetric structures, provided that we take into account the plasmonic modes beyond the fundamental ones. This not only sharpens our understanding of the existing concept, but also provides a profound insight into the plasmonic coherent interference in the near-field zone.

© 2010 Optical Society of America

Thanks to the merging of plasmonics and metamaterials, it is of great perspective to manipulate light by employing metal nanostructures in a unique way [13

13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]

, 24

24. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003). [CrossRef] [PubMed]

]. The involvement of optical dipole antennas in the classical analogue of EIT is a specific example of this merging. Zhang et al. [13

13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]

] first proposed the plasmon-induced transparency rendered by the coupling of bright and dark plasmonic modes, resembling a three-level atomic system. This was subsequently developed as a tripod system manifesting the classical analogue of quantum coherence swapping [14

14. H. Xu and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].

, 17

17. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010). [CrossRef]

]. Recently, Liu et al. [16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

] experimentally demonstrated plasmonic EIT at the Drude damping limit using a stacked optical metamaterial composed of an upper gold strip and a lower pair of gold strips with a dielectric spacer. It was found that the asymmetry is a prerequisite for the plasmonic EIT; in its absence, only a single absorption peak is visible, without any sign of an EIT-like effect, because of no evident coupling between bright and dark modes. Most of researchers also hold this view [16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

, 22

22. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]

, 25

25. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008). [CrossRef] [PubMed]

] explicitly or implicitly, since the dark mode is unlikely to be excited and the coupling is unavailable if the symmetry of the unit cell is unbroken.

In this work, we propose a scheme for the generation of plasmonic EIT even in symmetric structures. This scheme depends on a minor modification of the symmetric structure described in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

, in which EIT-like effect cannot be achieved. The underlying reasons are also elucidated in detail, based on the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT.

Fig. 1. (a) Three-dimensional and (b) two-dimensional views of the unit cell. The geometric parameters are w = 80 nm, d = 100 nm, l 1 = 346 nm, l 2 = 790 nm, and s = 0. The vertical distance between the upper gold strip and the lower pair of gold strips is denoted by h and the thickness t of each strip is 40 nm. The periodicity is 870 nm in both the x and y directions. The incident plane waves is irradiated along the z direction, and its electric component, E, is parallel to the x direction.

As described in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

and illustrated in Fig. 1, each unit cell consists of an upper gold strip as a bright mode, a pair of lower gold strips as a dark mode, and a dielectric spacer. In particular, the parameter s represents lateral displacement; symmetric and asymmetric configurations therefore have s = 0 and s ≠ 0, respectively. Plasmonic EIT originates from the coupling of bright and dark modes when the symmetry is broken [16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

, 22

22. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]

, 29

29. S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009). [CrossRef]

]. In essence, the former serves as an optical dipole antenna, and the latter as a quadrupole antenna, when the cell is illuminated perpendicularly and the electric field of the light is parallel to the upper strip. Here we do not restrict ourselves to the fundamental modes, such as the dipole and the quadrupole modes, and the higher order modes are also considered; in addition, our study is concentrated on the symmetric structure, and similar geometric parameters are used with two major differences. One difference from that in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

is that, for simplicity, the dielectric spacer and the substrate are not taken into account; i.e., they are treated as air, which does not affect the EIT-like feature except for a blueshift and does not lead to any loss of generality in the discussion that follows. The other difference is that the pair of lower gold strips is elongated to 790 nm, about twice the length of the strips described in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

. The reason for this elongation is that the higher order modes could be excited as well as the fundamental mode. The numerical calculations are carried out using the finite integration package (CST Microwave Studio). The permittivity of gold is described by the Drude model, with a plasmon frequency ωp of 2π × 2.175 × 1015 rad/s and a collision frequency νc of 1.225 × 1014 Hz, three times larger than that of bulk gold [16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

, 26

26. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006). [CrossRef] [PubMed]

, 27

27. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006). [CrossRef]

].

Fig. 2. (color online) (a) Transmission and (b) absorption spectra with various vertical distances h. The black curves in (a) and (b) are obtained with the same parameters as in Fig. 1 (h = 70 nm), except l 2 = 315 nm.

Figure 2 displays the simulated transmission and absorption spectra for symmetric structures with varying vertical distances h. The absorption spectra are calculated using formula A = 1 − T − R, where T and R denote the transmission and the reflection, respectively. Astonishingly, the EIT-like feature completely disappears when the length of the lower pair is relatively small, l 2 = 315 nm, without varying the other parameters. In contrast, this feature clearly manifests itself at approximately 240 THz when the lower pair is elongated to 790 nm. Obviously, the question of whether the plasmonic EIT can be excited depends on the length of the lower pair, as well as the structural asymmetry. There is a seeming inconsistency with the conclusion in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

, in which it was believed that the coupling wanes due to the structural symmetry. To answer this question then, the nature of the coupling must be deciphered. Lu et al. [15

15. Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].

] provided a physical picture for plasmonic EIT in which the phenomenon is considered as a result of plasmonic coherent interference in the near-field zone based on the excitation of surface plasmon polaritons (SPPs) and MPR. The former occurs on the upper strip and behaves as an optical dipole antenna [28

28. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]

], while the latter is induced by the magnetic component of the dipole fields. According to this picture, the disappearance of the EIT-like effect can be explained by the fact that, if the structure is symmetric, the magnetic components have the same magnitudes but in opposite directions on both sides of the upper strip, and thus the induced currents cancel each other out. Despite their opposite directions, however, in the absence of symmetry, the two magnetic components cannot be equal and thus produce a current or quadrupole in the lower pair. This means that the pivot of the plasmonic EIT is determined by the excitement of the lower pair (i.e., dark mode).

The point of importance is that the quadrupole cannot in general be excited by normal incidence because of its vanishing dipole moment (i.e., because it is dark). Thus, in order for the quadrupole to become activated, highly angled illumination must be employed [13

13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]

, 29

29. S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009). [CrossRef]

]. As shown in Fig. 3, two dark modes are magnetically excited at 120 and 240 THz when the plane wave irradiates the elongated pair (790 nm) along the -y direction, without broken symmetry in either the incident field or the structure itself. The latter frequency is twice as high as the former, which can be ascribed to be second-order MPR [30

30. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]

]. The second resonant peak at 240 THz coincided with the plasmonic EIT peak, as shown in Fig. 2. Therefore, on the basis of this physical picture, it can be concluded that the lower pair is excited at 240 THz.

Fig. 3. (a) Schematics for the incident plane wave on the lower pair of gold strips (l2 = 790 nm), in which the wave is parallel to the strips and its electric field along the x direction. The arrow is an Ey probe placed 10 nm away from the center of the end facet. (b) Spectral response of the Ey probe.

Taking a closer look at the z-component distribution of the magnetic field at the frequency of plasmonic EIT, it is unambiguous that the magnetic fields point in and out of xy plane on both sides of the upper strip [see Fig. 4(a)]. Since there is the fact that the magnetic field is π/2 out of phase with the electric field [15

15. Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].

, 31

31. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009). [CrossRef] [PubMed]

], the y-component distribution of the electric field is illustrated in Fig. 4(b) with a π/2 phase difference compared to the magnetic field; here, the dark mode is activated and two antisymmetric quadrupolar resonances are induced on each side of the upper strip by the two antisymmetric magnetic fields of the dipole fields. Due to the excitations of the two circular currents, plasmonic EIT is also achieved in the symmetric structures. Because the lower pair is elongated, more room is provided to accommodate the two circular currents, thereby avoiding cancelation. Consequently, the second-order MPR is excited so that plasmonic EIT can appear even in the symmetric structures (see Fig. 2). This possibility was previously not even considered as a candidate for plasmonic EIT.

Furthermore, as shown in Fig. 3, the intensity of the second-order MPR is larger than that of the fundamental mode, broadening the plasmonic EIT peak compared to the peak described in Ref. 16

16. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

. It is generally believed that strong coupling induces peak broadening [20

20. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]

, 21

21. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009). [CrossRef] [PubMed]

]. On the other hand, the strength of the coupling can be tuned by adjusting the vertical distance h. The larger is the vertical distance, the smaller is the peak width; of course, this narrowing reduces transmission, as shown in Fig. 2.

In conclusion, it is possible for plasmonic EIT to be realized even in symmetric structures depending on the possibility of the high-order MPR to be excited. This clarifies the essence of coupling and strongly validates the physical picture of MPR-mediated plasmonic EIT. Essentially, MPR, besides symmetry or asymmetry, is the crux of the plasmonic analogue of EIT. At the time of this writing, corresponding modifications were not carried out on the upper strip because the frequency scaling law for SPPs is more complicated than that for MPR arising from phase shifts [32

32. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]

]. The point of great interest is that the optical response is invariant, whereas the restrictions on size are partially relaxed, making fabrication easier.

Fig. 4. (a) The z-component distribution of the magnetic field at a frequency of plasmonic EIT with h = 70 nm, where the phase is 150°. (b) The y-component distribution of the electric field at the same frequency, but with a phase of 60°.

Yuehui Lu would like to express his gratitude to Nguyen Thanh Tung for valuable discussions. This work was supported by the MEST/NRF through the Quantum Photonic Science Research Center, Korea.

References and links

1.

K.-J. Boller, A. Imamoǧlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991). [CrossRef] [PubMed]

2.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997). [CrossRef]

3.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005). [CrossRef]

4.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000). [CrossRef] [PubMed]

5.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999). [CrossRef]

6.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999). [CrossRef]

7.

C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002). [CrossRef]

8.

T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001). [CrossRef]

9.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]

10.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]

11.

L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626 (2004). [CrossRef] [PubMed]

12.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]

13.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]

14.

H. Xu and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].

15.

Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].

16.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]

17.

X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010). [CrossRef]

18.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]

19.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]

20.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]

21.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009). [CrossRef] [PubMed]

22.

R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]

23.

V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]

24.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003). [CrossRef] [PubMed]

25.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008). [CrossRef] [PubMed]

26.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006). [CrossRef] [PubMed]

27.

S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006). [CrossRef]

28.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]

29.

S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009). [CrossRef]

30.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]

31.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009). [CrossRef] [PubMed]

32.

T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 27, 2010
Revised Manuscript: June 4, 2010
Manuscript Accepted: June 4, 2010
Published: June 7, 2010

Citation
Yuehui Lu, Xingri Jin, Haiyu Zheng, YoungPak Lee, Joo Yull Rhee, and Won Ho Jang, "Plasmonic electromagnetically-induced transparency in symmetric structures," Opt. Express 18, 13396-13401 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. . K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991). [CrossRef] [PubMed]
  2. . S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997). [CrossRef]
  3. . M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  4. . M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000). [CrossRef] [PubMed]
  5. . S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999). [CrossRef]
  6. . L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999). [CrossRef]
  7. . C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002). [CrossRef]
  8. . T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001). [CrossRef]
  9. . D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  10. . A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  11. . L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko,“Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 626 (2004). [CrossRef] [PubMed]
  12. . Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  13. . S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  14. . H. Xu, and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].
  15. . Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].
  16. . N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]
  17. . X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010). [CrossRef]
  18. . N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  19. . N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]
  20. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  21. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009). [CrossRef] [PubMed]
  22. . R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]
  23. . V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]
  24. . E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003). [CrossRef] [PubMed]
  25. . F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008). [CrossRef] [PubMed]
  26. . G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006). [CrossRef] [PubMed]
  27. . S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metaldielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006). [CrossRef]
  28. . L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  29. . S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009). [CrossRef]
  30. . A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]
  31. . M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009). [CrossRef] [PubMed]
  32. . T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited