OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 15 — Jul. 19, 2010
  • pp: 15419–15425
« Show journal navigation

Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments

Toby K. Westberry, Giorgio Dall’Olmo, Emmanuel Boss, Michael J. Behrenfeld, and Thierry Moutin  »View Author Affiliations


Optics Express, Vol. 18, Issue 15, pp. 15419-15425 (2010)
http://dx.doi.org/10.1364/OE.18.015419


View Full Text Article

Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an extensive data set of particle attenuation (cp ), backscattering (bbp ), and chlorophyll concentration (Chl) from a diverse set of open ocean environments. A consistent observation in the data set is the strong coherence between cp and bbp and the resulting constancy of the backscattering ratio (0.010 ± 0.002). The strong covariability between cp and bbp must be rooted in one or both of two explanations, 1) the size distribution of particles in the ocean is remarkably conserved and particle types responsible for cp and bbp covary, 2) the same particle types exert influence on both quantities. Therefore, existing relationships between cp or Chl:cp and phytoplankton biomass and physiological indices can be conceptually extended to the use of bbp . This finding lends support to use of satellite-derived Chl and bbp for investigation of phytoplankton biomass and physiology and broadens the applications of existing ocean color retrievals.

© 2010 OSA

1. Introduction

The particulate scattering coefficient (bp) quantifies the intensity of total scattered light (neglecting water) and is composed of a large forward component and a small (~1%) backward component (bbp) which contributes to satellite reflectance measurements [3

3. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002). [CrossRef] [PubMed]

,4

4. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002). [CrossRef] [PubMed]

]. These two scattering indices have been theoretically linked to two distinct types of particles, predominantly distinguished by their size. Small (<1μm) non-living particles are thought to determine the magnitude of backscattering based on Mie theory calculations, while larger (~0.5-20μm) particles preferentially affect the forward scattering [5

5. A. Morel and Y. H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates - a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991). [CrossRef]

,6

6. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]

]. This larger size fraction overlaps the size domain of most phytoplankton in the ocean and evidence has been presented which relates bp (or nearly equivalently, cp, the particulate beam attenuation coefficient) to phytoplankton biomass and physiology [7

7. M. D. Durand and R. J. Olson, “Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton,” Deep Sea Res. Part II Top. Stud. Oceanogr. 43(4-6), 891–906 (1996). [CrossRef]

10

10. M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006). [CrossRef]

] On the other hand, no direct evidence exists supporting the relationship between bbp and the sub-micron particle pool, due to experimental difficulties measuring the latter. Nevertheless, it is routinely accepted that these small particles greatly influence bbp (but see [11

11. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004). [CrossRef]

,12

12. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]

]).

The objective of this work is to investigate the covariability between cp and bbp in different regions of the global open ocean based on extensive shipboard data collected in diverse environments. We compare and contrast our data with existing results in the literature and show a consistent, quantitative relationship between the two scattering indices and between regions.

2. Methods

All of the in situ data presented here were collected during four cruises to the Equatorial Pacific (April-May 2007, R/V Ka’imi Moana), North Atlantic (May 2008, R/V Knorr), Mediterranean Sea (June-July 2008, R/V L’Atalante), and Subarctic Northeast Pacific (August 2009, CCGS John P. Tully) totaling ~75 measurement days. Digital measurements were collected with the same experimental setup on all four cruises using the ship’s clean water supply in a quasi-continuous manner. In addition, periodic comparisons were made between this “flow-through” water source and surface seawater collected with a traditional CTD rosette for validation (see Discussion). Subsequent data processing of optical measurements was also consistent between the four cruises, thus minimizing or eliminating methodological differences.

Bio-optical data were collected with a suite of instruments including a hyperspectral absorption-attenuation meter (ACs), multispectral backscattering sensor (ECO-BB3), and 2 single wavelength C-Star transmissometers (526 & 660 nm). Prior to interrogation by the instruments, surface seawater was passed through 2 consecutive vortex debubblers and an electronically actuated valve programmed to divert seawater flow through a 0.2 μm nylon cartridge filter for 10 minutes each hour. For the remaining 50 minutes of each hour, seawater flow was uninterrupted and constitutes “bulk” measurements. Piecewise linear interpolation of the 0.2μm filtered periods provides a baseline primarily representing “dissolved” substances, but also including calibration uncertainties and short term bio-fouling. Subtraction of the baseline from bulk absorption and attenuation measurements yields calibration independent particulate optical quantities, with uncertainties at the level of instrument precision [12

12. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]

,18

18. E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007). [CrossRef]

].

All subsequent processing of AC-s, C-Star, and ECO-BB3 data followed procedures described in [12

12. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]

]. Particulate backscattering, bbp(λ), was measured reliably at two wavelengths (470 and 526 nm), but in the current analyses, we report measurements at a single wavelength, 526 nm, as results at other wavelengths are similar.

3. Results

Chlorophyll concentrations varied over three orders of magnitude across data sets from extremely oligotrophic (<0.05 mg m−3) to mesotrophic (~5 mg m−3). Total particulate attenuation at 526 nm, cp(526), ranged from <0.05 to 1 m−1, while particulate backscattering, bbp(526), ranged from 0.0004 to 0.01 m−1. On average, particulate absorption at 526 nm, ap(526), was a near-negligible fraction of cp(526) (~4 ± 1%), such that cp ≈bp. This is true across most of the visible spectrum, except near the phytoplankton absorption maximum in the blue (~440 nm) and is noteworthy for comparison with historical relationships which may use bp or cp, whereas we will consider them equivalent (see also [19

19. H. Loisel and A. Morel, “Light Scattering and Chlorophyll Concentration in Case 1 Waters: a Reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998). [CrossRef]

]). Figure 1A
Fig. 1 A. Relationship between backscattering (bbp) and beam attenuation (cp) at 526 nm (colors indicate number of observations at each bbp,cp pair) . “Best fit” line is calculated from weighted linear regression of 2D histogram with weights assigned as the square of the number of points found in each bin. Relationship of Huot et al. [20] (dashed line) was derived from equivalence of their Eqs. (8) and 9, while that of Dall’Olmo et al. [12] (solid line) was derived from the Equatorial Pacific data set alone. B. Distributions of backscattering ratio (bbp: cp) at 526 nm for each data set and for all data combined. Histograms have been normalized to the total number of observations (N~105).
shows bbp(526) plotted versus cp(526) for the four cruises. The number of data points (N~105) requires a bivariate histogram to see underlying trends. A weighted linear least squares regression applied to all data yields a slope of (9.1 ± 0.4) × 10−3 and an intercept of (2.0 ± 0.1) × 10−4 m−1 (r2 = 0.92, uncertainties estimated from 1000 bootstrap samples). The resulting backscattering ratios (dimensionless) are shown in Fig. 1B and can be described by a median value ± the percentile range equivalent to a standard deviation around a normal distribution. For the Equatorial Pacific, North Atlantic, Mediterranean Sea, and Northeast Pacific these values are 0.011 ± 0.001, 0.010 ± 0.002, 0.010 ± 0.002, and 0.012 ± 0.003 respectively. The full range of the four data sets, described by the 5th-95th percentile range, is 0.007-0.015.

4. Discussion

The accuracy and precision of the measurements presented here can be evaluated with a limited number of overlapping measurements for chl, cp, and bbp. Discrete matchups with HPLC-derived Chl are in excellent agreement (Fig. 3A), median bias in ACs-based Chl estimates is −0.002 ± 0.067 mg m−3 (NMB = −2% ± 18%). Similar matchups of cp with transmissometers mounted on the CTDs of each cruise also compare well, median bias is 0.0001 ± 0.031 m−1 (NMB = −0.2% ± 11.4%) (Fig. 3B). Comparisons with independent bbp estimates were only available for the subset of data taken from the North Atlantic and are shown in Fig. 3C. One caveat is that the sensors, although identical, measured at different wavelengths (526 and 700 nm for the underway and CTD-mounted instruments, respectively) and it might be expected a priori that bbp values be slightly higher at 526 nm than 700 nm depending upon the slope of the backscattering spectrum. However, in highly productive regions such as the North Atlantic, we can expect the backscattering spectrum to be relatively flat (slope~0, e.g., [24

24. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res., [Oceans] 111(C9), C09024 (2006). [CrossRef]

,25

25. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res., [Oceans] 114(C9), C09015 (2009). [CrossRef]

]) and spectral differences to be minimal. The median ratio of the underway to CTD bbp values is 1.04 ± 0.07 suggesting that underway bbp values are ~4% higher. Thus, the values we present are robust and have no significant biases.

Most studies of the backscattering ratio to date have focused on contrasting the full range of bbp:cp from surface open ocean to coastal waters to bottom boundary layers [16,26,27]. Huot et al. [20] reported the first comprehensive set of bp, bbp, and Chl measurements in the open ocean and found a median bbp:cp at 532nm ~0.006 with no obvious Chl dependence. However, the same quantity at neighboring wavelengths (510 and 589 nm) was also measured by [17] and found to be higher (bbp:cp ~0.01). Here we greatly expand the range, both dynamic and geographic, and number of measurements (N~105 compared to N~102) to examine the robustness of these findings. While our conclusions are somewhat similar, we find a median value (bbp:cp ~0.01) which is remarkably conserved across very different oceanic environments and in good agreement with Stramski et al. [17] and Whitmire et al [16]. Although it is impossible to determine the exact reason for this observation with current data, one intriguing hypothesis is that phytoplankton-sized particles contribute significantly to both cp and bbp [10

10. M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006). [CrossRef]

,12

12. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]

]. Indeed, for much of the ocean, cp variability reflects phytoplankton biomass [9

9. M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean?” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003). [CrossRef]

,10

10. M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006). [CrossRef]

]. Given the universal coherence between cp and bbp found here, it would appear that bbp conveys similar information. Arguments against this possibility rely on [Mie] theoretical results which have documented shortcomings in their treatment of phytoplankton attributes [28

28. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979). [CrossRef] [PubMed]

]. Nevertheless, if this observation holds true, utilization of bbp as a proxy for phytoplankton biomass and the Chl:bbp ratio as a phytoplankton physiological index should be possible [13

13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005), doi:. [CrossRef]

,14

14. T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), GB2024 (2008), doi:. [CrossRef]

].

One point of departure between these data and those previously reported (e.g., [19

19. H. Loisel and A. Morel, “Light Scattering and Chlorophyll Concentration in Case 1 Waters: a Reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998). [CrossRef]

,20

20. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5(2), 495–507 (2008). [CrossRef]

]) is the seemingly poor relationship between Chl and cp or bbp. This is in contrast to the usual presumption that the two scattering indices smoothly vary as a function of Chl, albeit with some degree of noise (c.f., large amount of scatter in Fig. 3A of [19

19. H. Loisel and A. Morel, “Light Scattering and Chlorophyll Concentration in Case 1 Waters: a Reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998). [CrossRef]

]). Although the first order dependence is indeed due to biomass (and thus Chl by association), there are several reasons to expect significant dispersion in either of these relationships. Differences in cell size, photoacclimation state, and nutrient limitation (particularly with respect to iron) will all exert control on cellular chlorophyll content, and thus, the apparent chlorophyll per unit scattering (or backscattering). The collective data set presented here spans a large gradient in each of these factors and a simple qualitative accounting due to each provides insight to the individual Chl:cp distributions seen in Fig. 2B. For example, the oligotrophic Mediterranean Sea data can be characterized as Synechococcus and Prochlorococcus dominated (from HPLC data, not shown) which are high-light and low-nutrient acclimated. The small size of these phytoplankters (cell diameter ≤ 1μm) and their subtropical, high light environment give them the smallest Chl:cp ratio (Fig. 2B). In contrast, the springtime North Atlantic data were collected under diatom-rich conditions (HPLC data, not shown) having typical sizes from ~10μm to greater than 100μm. Acclimation irradiances were presumably quite low based on the time of year (May), high latitude (~62°N) and moderately deep mixed layer depths (~40-50 m, not shown). The combined effects of these growth conditions result in the highest Chl:cp values observed (Fig. 2B). Last, we know that the Equatorial Pacific and subarctic North Pacific are chronically iron limited regions, while the North Atlantic and Mediterranean are generally not, making iron effects on intracellular Chl and growth an important consideration also.

Acknowledgements

This work was funded by NASA grant number NNX08AK70G and NNG05GD18G. The authors would like to thank Josephine Ras and Mary Jane Perry for providing validation data used in Fig. 3. We would also like to thank the captains, crews, and scientific participants aboard the cruises used in this work. The BOUM cruise in the Mediterranean Sea was co-funded by the French national LEFE-CYBER program (INSU CNRS) and the European IP SESAME.

References and links

1.

H. R. Gordon, and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery. a review (Springer-Verlag, New York, 1983).

2.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988). [CrossRef]

3.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002). [CrossRef] [PubMed]

4.

Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002). [CrossRef] [PubMed]

5.

A. Morel and Y. H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates - a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991). [CrossRef]

6.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]

7.

M. D. Durand and R. J. Olson, “Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton,” Deep Sea Res. Part II Top. Stud. Oceanogr. 43(4-6), 891–906 (1996). [CrossRef]

8.

R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377–2391 (2003). [CrossRef]

9.

M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean?” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003). [CrossRef]

10.

M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006). [CrossRef]

11.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004). [CrossRef]

12.

G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]

13.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005), doi:. [CrossRef]

14.

T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), GB2024 (2008), doi:. [CrossRef]

15.

J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992). [CrossRef]

16.

A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007). [CrossRef] [PubMed]

17.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Rottgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008). [CrossRef]

18.

E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007). [CrossRef]

19.

H. Loisel and A. Morel, “Light Scattering and Chlorophyll Concentration in Case 1 Waters: a Reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998). [CrossRef]

20.

Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5(2), 495–507 (2008). [CrossRef]

21.

A. Morel and S. Maritorena, “Bio-pptical properties of oceanic waters: a reappraisal,” J. Geophys. Res., [Oceans] 106(C4), 7163–7180 (2001). [CrossRef]

22.

I. Michael, Sieracki, Bigelow Laboratory for Ocean Sciences, 180 McKown Point Road, West Boothbay Harbor, ME, 04575–0475, (personal communication, 2008).

23.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res., [Oceans] 110(C7), C07001 (2005). [CrossRef]

24.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res., [Oceans] 111(C9), C09024 (2006). [CrossRef]

25.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res., [Oceans] 114(C9), C09015 (2009). [CrossRef]

26.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case i and case ii waters,” J. Geophys. Res., [Oceans] 106(C7), 14129–14142 (2001). [CrossRef]

27.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res., [Oceans] 109(C1), C01014 (2004). [CrossRef]

28.

R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979). [CrossRef] [PubMed]

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: April 19, 2010
Revised Manuscript: June 14, 2010
Manuscript Accepted: June 28, 2010
Published: July 6, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Toby K. Westberry, Giorgio Dall’Olmo, Emmanuel Boss, Michael J. Behrenfeld, and Thierry Moutin, "Coherence of particulate beam attenuation and backscattering coefficients in diverse open ocean environments," Opt. Express 18, 15419-15425 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-15-15419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon and A. Morel, Remote assessment of ocean color for interpretation of satellite visible imagery. a review (Springer-Verlag, New York, 1983).
  2. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988). [CrossRef]
  3. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41(15), 2705–2714 (2002). [CrossRef] [PubMed]
  4. Z. P. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002). [CrossRef] [PubMed]
  5. A. Morel and Y. H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates - a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49(1), 177–202 (1991). [CrossRef]
  6. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28(4), 343–383 (1991). [CrossRef]
  7. M. D. Durand and R. J. Olson, “Contributions of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra- and nanoplankton,” Deep Sea Res. Part II Top. Stud. Oceanogr. 43(4-6), 891–906 (1996). [CrossRef]
  8. R. E. Green, H. M. Sosik, and R. J. Olson, “Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters,” Limnol. Oceanogr. 48, 2377–2391 (2003). [CrossRef]
  9. M. J. Behrenfeld and E. Boss, “The beam attenuation to chlorophyll ratio: an optical index of phytoplankton physiology in the surface ocean?” Deep Sea Res. Part I Oceanogr. Res. Pap. 50(12), 1537–1549 (2003). [CrossRef]
  10. M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64(3), 431–451 (2006). [CrossRef]
  11. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61(1), 27–56 (2004). [CrossRef]
  12. G. Dall'Olmo, T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade, “Significant contribution of large particles to optical backscattering in the open ocean,” Biogeosciences 6(6), 947–967 (2009). [CrossRef]
  13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19(1), GB1006 (2005), doi:. [CrossRef]
  14. T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22(2), GB2024 (2008), doi:. [CrossRef]
  15. J. C. Kitchen and J. R. V. Zaneveld, “A three-layered sphere model of the optical properties of phytoplankton,” Limnol. Oceanogr. 37(8), 1680–1690 (1992). [CrossRef]
  16. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, “Spectral variability of the particulate backscattering ratio,” Opt. Express 15(11), 7019–7031 (2007). [CrossRef] [PubMed]
  17. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Rottgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5(1), 171–201 (2008). [CrossRef]
  18. E. S. Boss, R. Collier, G. Larson, K. Fennel, and W. S. Pegau, “Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR,” Hydrobiologia 574(1), 149–159 (2007). [CrossRef]
  19. H. Loisel and A. Morel, “Light Scattering and Chlorophyll Concentration in Case 1 Waters: a Reexamination,” Limnol. Oceanogr. 43(5), 847–858 (1998). [CrossRef]
  20. Y. Huot, A. Morel, M. S. Twardowski, D. Stramski, and R. A. Reynolds, “Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean,” Biogeosciences 5(2), 495–507 (2008). [CrossRef]
  21. A. Morel and S. Maritorena, “Bio-pptical properties of oceanic waters: a reappraisal,” J. Geophys. Res., [Oceans] 106(C4), 7163–7180 (2001). [CrossRef]
  22. I. Michael, Sieracki, Bigelow Laboratory for Ocean Sciences, 180 McKown Point Road, West Boothbay Harbor, ME, 04575–0475, (personal communication, 2008).
  23. W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data,” J. Geophys. Res., [Oceans] 110(C7), C07001 (2005). [CrossRef]
  24. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res., [Oceans] 111(C9), C09024 (2006). [CrossRef]
  25. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res., [Oceans] 114(C9), C09015 (2009). [CrossRef]
  26. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case i and case ii waters,” J. Geophys. Res., [Oceans] 106(C7), 14129–14142 (2001). [CrossRef]
  27. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res., [Oceans] 109(C1), C01014 (2004). [CrossRef]
  28. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18(5), 585–588 (1979). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited