OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16849–16857
« Show journal navigation

Cascaded multiplexed optical link on a telecommunication network for frequency dissemination

Olivier Lopez, Adil Haboucha, Fabien Kéfélian, Haifeng Jiang, Bruno Chanteau, Vincent Roncin, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16849-16857 (2010)
http://dx.doi.org/10.1364/OE.18.016849


View Full Text Article

Acrobat PDF (2725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a cascaded optical link for ultrastable frequency dissemination comprised of two compensated links of 150 km and a repeater station. Each link includes 114 km of Internet fiber simultaneously carrying data traffic through a dense wavelength division multiplexing technology, and passes through two routing centers of the telecommunication network. The optical reference signal is inserted in and extracted from the communication network using bidirectional optical add-drop multiplexers. The repeater station operates autonomously ensuring noise compensation on the two links and the ultra-stable signal optical regeneration. The compensated link shows a fractional frequency instability of 3 × 10−15 at one second measurement time and 5 × 10−20 at 20 hours. This work paves the way to a wide dissemination of ultra-stable optical clock signals between distant laboratories via the Internet network.

© 2010 OSA

1. Introduction

We have recently developed a frequency dissemination approach which takes advantage of the existing Internet fiber network already connecting research facilities and universities via the National Research Networks (NRENs) [22

22. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009). [CrossRef] [PubMed]

]. With this approach, the ultra-stable signal propagates directly on a telecommunication fiber simultaneously transmitting digital data, using dense wavelength division multiplexing (DWDM) technology.

2. Repeater station for multi-segment link

2.1 Principle of operation

To implement this approach, repeater stations are designed to be installed in remote telecommunication sites which are noisier and have greater temperature fluctuations than the laboratory environment. Consequently, a highly robust and reliable system is required. Each station consists of two modules, one for the electronics package and the other for the optical part.

2.2 Optical set-up

The optical set-up of each station consists of a laser, an optical module, three acousto-optic modulators (AOM) and two photodiodes (PD). For the local optical oscillator we use a fiber laser system based on a distributed-feedback technique (Koheras Basik OEM). Its free-running linewidth is about 1kHz. Its frequency can be tuned over a range of ~2 GHz, which is sufficient for compensating the long term noise of this laser by controlling the PZT port. Indeed a ± 1 K fluctuation of the room temperature corresponds to a variation of the optical frequency smaller than 500 MHz.

The compact optical module has been realized by splicing off-the-shelf fiber-optic components. This module contains all the critical components of the station in term of phase stability: 2 Faraday mirrors, 2 isolators (in front of the photodiodes) and a few couplers. Consequently, the fiber pigtail lengths have been minimized and finely matched in order to reduce the effect of the residual thermal fluctuation of the non-common paths’ lengths. The whole optical circuit is housed in an aluminum box (dimensions 30x100x180 mm) covered by a thick polyurethane foam layer (50mm) for acoustic noise and temperature shielding. Moreover the temperature is actively stabilized around 298 K using a Peltier element. The temperature varies less than 20 mK when the ambient temperature fluctuates about 1 K.

2.3 Electronic set-up

The electronic system can be seen on Fig. 1. The beatnote signal for the laser lock is first filtered with a 75 MHz band pass filter to reduce the noise bandwidth to about 10 MHz. In order to make the control system insensitive to amplitude fluctuations, we use a logarithmic amplifier. A digital phase-frequency detector generates the phase-error signal processed by a loop filter (PLL1). Fast corrections (100 kHz bandwidth) are applied through the voltage controlled oscillator driving AOM3. Slow corrections are applied to the laser PZT input with a few tens of Hz bandwidth.

2.4 The station automatic operation

The station is automatically operated by microcontrollers in order to achieve autonomous operation. First of all, one microcontroller manages the local laser phase-lock acquisition. The laser frequency is scanned until the beatnote signal at the logarithmic amplifier exceeds a pre-defined power level. This ensures that it is inside the capture range of the phase lock loop. Consequently the loop is closed by the microcontroller, and the laser frequency is locked at the frequency ν-75 MHz, where ν is the received laser frequency. At a second step, the tracking oscillator loop is closed, and finally PLL2 is closed.

3. Cascaded Link

3.1 Station testbed

3.2 Cascaded link using the telecommunication network

4. Results and discussions

4. Conclusion

Acknowledgments

The authors are deeply grateful to D. Vandromme, T. Bono and E. Camisard from GIP RENATER and J. F. Florence from Université Paris 13 for their support in using the Renater network, and to F. Wiotte and A. Kaladjian for technical support. We acknowledge funding support from the Agence Nationale de la Recherche (ANR BLAN06-3_144016) and Université Paris 13.

References and links

1.

S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007). [CrossRef] [PubMed]

2.

C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17).,” Phys. Rev. Lett. 94(20), 203904 (2005). [CrossRef] [PubMed]

3.

M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” IEEE Proc 95(10), 1931–1946 (2007). [CrossRef]

4.

B. Shillue, S. Albanna, and L. D'Addario, “Transmission of low phase noise, low phase drift millimeter-wavelength references by a stabilized fiber distribution system,” Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 201–204.

5.

R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, “Stable transmission of radio frequency signals on fiber links using interferometric delay sensing,” Opt. Lett. 34(20), 3050–3052 (2009). [CrossRef] [PubMed]

6.

S. G. Karshenboim, “Fundamental physical constants: looking from different angles,” Can. J. Phys. 83(8), 767–811 (2005). [CrossRef]

7.

V. V. Flambaum, “Enhanced effect of temporal variation of the fine-structure constant in diatomic molecules,” Phys. Rev. D 69, 115006 (2004). [CrossRef]

8.

J. P. Uzan, “The fundamental constants and their variation: observational and theoretical status,” Rev. Mod. Phys. 75(2), 403–455 (2003). [CrossRef]

9.

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D 48(1), 35–41 (2008). [CrossRef]

10.

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010). [CrossRef]

11.

M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009). [CrossRef] [PubMed]

12.

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010). [CrossRef]

13.

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32(21), 3056–3058 (2007). [CrossRef] [PubMed]

14.

P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008). [CrossRef]

15.

M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008). [CrossRef] [PubMed]

16.

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]

17.

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]

18.

O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97(3), 541–551 (2009). [CrossRef]

19.

H. Schnatz, O. Terra, K. Predehl, T. Feldmann, T. Legero, B. Lipphardt, U. Sterr, G. Grosche, R. Holzwarth, T. W. Hänsch, T. Udem, Z. H. Lu, L. J. Wang, W. Ertmer, J. Friebe, A. Pape, E.-M. Rasel, M. Riedmann, and T. Wübbena, “Phase-coherent frequency comparison of optical clocks using a telecommunication fiber link,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 175–181 (2010). [CrossRef]

20.

F. Kéfélian, H. Jiang, O. Lopez, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance ultrastable frequency transfer over urban fiber link: toward a European network,” Proc. SPIE 7431, 74310D (2009). [CrossRef]

21.

G. Grosche, et al., “1,5 µm Fiber Network for Long-Distance Metrology,” Proceedings of IEEE International Frequency Control Symposium (IEEE, 2010), to be published.

22.

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009). [CrossRef] [PubMed]

23.

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18(15), 16102-16111 (2010). [CrossRef] [PubMed]

24.

G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

25.

A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-Klein, “Stability of the proton-to-electron mass ratio,” Phys. Rev. Lett. 100(15), 150801 (2008). [CrossRef] [PubMed]

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 16, 2010
Revised Manuscript: July 16, 2010
Manuscript Accepted: July 17, 2010
Published: July 23, 2010

Citation
Olivier Lopez, Adil Haboucha, Fabien Kéfélian, Haifeng Jiang, Bruno Chanteau, Vincent Roncin, Christian Chardonnet, Anne Amy-Klein, and Giorgio Santarelli, "Cascaded multiplexed optical link on a telecommunication network for frequency dissemination," Opt. Express 18, 16849-16857 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78(2), 021101 (2007). [CrossRef] [PubMed]
  2. C. Daussy, O. Lopez, A. Amy-Klein, A. Goncharov, M. Guinet, C. Chardonnet, F. Narbonneau, M. Lours, D. Chambon, S. Bize, A. Clairon, G. Santarelli, M. E. Tobar, and A. N. Luiten, “Long-distance frequency dissemination with a resolution of 10(-17).,” Phys. Rev. Lett. 94(20), 203904 (2005). [CrossRef] [PubMed]
  3. M. Calhoun, S. Huang, and R. L. Tjoelker, “Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays,” IEEE Proc 95(10), 1931–1946 (2007). [CrossRef]
  4. B. Shillue, S. Albanna, and L. D'Addario, “Transmission of low phase noise, low phase drift millimeter-wavelength references by a stabilized fiber distribution system,” Proceedings of IEEE International Topical Meeting on Microwave Photonics (IEEE, 2004), pp. 201–204.
  5. R. Wilcox, J. M. Byrd, L. Doolittle, G. Huang, and J. W. Staples, “Stable transmission of radio frequency signals on fiber links using interferometric delay sensing,” Opt. Lett. 34(20), 3050–3052 (2009). [CrossRef] [PubMed]
  6. S. G. Karshenboim, “Fundamental physical constants: looking from different angles,” Can. J. Phys. 83(8), 767–811 (2005). [CrossRef]
  7. V. V. Flambaum, “Enhanced effect of temporal variation of the fine-structure constant in diatomic molecules,” Phys. Rev. D 69, 115006 (2004). [CrossRef]
  8. J. P. Uzan, “The fundamental constants and their variation: observational and theoretical status,” Rev. Mod. Phys. 75(2), 403–455 (2003). [CrossRef]
  9. O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D 48(1), 35–41 (2008). [CrossRef]
  10. M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 168–174 (2010). [CrossRef]
  11. M. Kumagai, M. Fujieda, S. Nagano, and M. Hosokawa, “Stable radio frequency transfer in 114 km urban optical fiber link,” Opt. Lett. 34(19), 2949–2951 (2009). [CrossRef] [PubMed]
  12. O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98(4), 723–727 (2010). [CrossRef]
  13. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett. 32(21), 3056–3058 (2007). [CrossRef] [PubMed]
  14. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25(8), 1284–1293 (2008). [CrossRef]
  15. M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16(21), 16459–16466 (2008). [CrossRef] [PubMed]
  16. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B 25(12), 2029–2035 (2008). [CrossRef]
  17. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett. 34(15), 2270–2272 (2009). [CrossRef] [PubMed]
  18. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97(3), 541–551 (2009). [CrossRef]
  19. H. Schnatz, O. Terra, K. Predehl, T. Feldmann, T. Legero, B. Lipphardt, U. Sterr, G. Grosche, R. Holzwarth, T. W. Hänsch, T. Udem, Z. H. Lu, L. J. Wang, W. Ertmer, J. Friebe, A. Pape, E.-M. Rasel, M. Riedmann, and T. Wübbena, “Phase-coherent frequency comparison of optical clocks using a telecommunication fiber link,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(1), 175–181 (2010). [CrossRef]
  20. F. Kéfélian, H. Jiang, O. Lopez, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance ultrastable frequency transfer over urban fiber link: toward a European network,” Proc. SPIE 7431, 74310D (2009). [CrossRef]
  21. G. Grosche, et al., “1,5 µm Fiber Network for Long-Distance Metrology,” Proceedings of IEEE International Frequency Control Symposium (IEEE, 2010), to be published.
  22. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett. 34(10), 1573–1575 (2009). [CrossRef] [PubMed]
  23. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18(15), 16102-16111 (2010). [CrossRef] [PubMed]
  24. G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).
  25. A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-Klein, “Stability of the proton-to-electron mass ratio,” Phys. Rev. Lett. 100(15), 150801 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited