OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19286–19291
« Show journal navigation

Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography

Ting Han, Steve Madden, Douglas Bulla, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19286-19291 (2010)
http://dx.doi.org/10.1364/OE.18.019286


View Full Text Article

Acrobat PDF (2410 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication of low loss rib waveguides from chalcogenide glass films by thermal nano-imprint using a soft stamp. Waveguides 2 – 4 µm wide and 1 µm high were fabricated with extremely smooth sidewalls and optical losses limited by Rayleigh scattering to values of 0.26 dB/cm for the TM and 0.27 dB/cm for TE polarizations at 1550nm.

© 2010 OSA

Introduction

Chalcogenide glasses contain one or more chalcogen elements (S, Se or Te) as a major constituent covalently bonded to network formers, such as Ge, As, Ga, or Si to form a glass with unusual and sometimes remarkable properties. Chalcogenides have found widespread application as phase change materials for optical data storage media (DVD-Rs) and non-volatile random access memories (PRAM); as lens materials for thermal infrared imaging; as photovoltaic cells; and due to their large non-resonant non-linearity and low linear and non-linear losses, see e.g [1

1. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]

3

3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]

], as promising materials for integrated devices for all-optical processing [4

4. M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]

6

6. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]

]. The extraordinarily wide transmission of chalcogenides (out to 20μm in some cases) has also sparked interest in their use to create integrated devices for mid-infrared sensing and defense applications since most chemical or biological contaminants or toxins have their spectral fingerprints in this region.

Thermal nanoimprint technologies on the other hand are extremely fast and low cost, requiring only a single step to fabricate the device layer. They are also well known for their ability to produce even nanometer sized features [11

11. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]

] with no use of chemicals. Further, they can be used unmodified with any glass composition which has suitable softening characteristics, which means it is not necessary to change the processing steps as the material composition changes. Several groups have demonstrated the possibility of molding chalcogenide glasses [12

12. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003). [CrossRef]

15

15. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]

], but to date the best waveguides exhibited unacceptably high propagation losses of 2.9dB/cm at 1550nm [15

15. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]

].

Fabrication

Films 1μm thick of As24S38Se38 glass were deposited by thermal evaporation onto 100mm <100> silicon wafers with 1.5μm of thermal oxide as under cladding. The deposition was carried out in a chamber evacuated to 2 × 10−7 Torr and at a source to substrate distance of ~40 cm using a resistively heated Molybdenum boat.

Instead of following the established hard stamp thermal imprint route we chose to modify the process we used previously for ultraviolet nanoimprint lithography of polysiloxane waveguides [16

16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]

], taking advantage of the low glass transition temperature of As24S38Se38 at ~120°C. The master for creating the final PDMS stamp was patterned on 1.5 µm of thermal oxide silicon via optical contact lithography and Inductively Coupled Plasma (ICP) reactive ion etching. A ~10nm thick anti-stick layer was then deposited by plasma processing with CHF3 and ICP power only [16

16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]

]. A 100mm diameter soft stamp was made by casting liquid PDMS (Corning Sylgard 184) onto this patterned substrate and curing at 100°C for 4 hours. The process was designed to displace the minimal amount of glass possible, adapted from a previously developed UV-NIL process [16

16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]

]. For each imprinted waveguide, a pair of 0.5 µm deep “cladding ribs” was used to define the core with waveguide widths from 1.3 to 3.3 µm. To ensure flexibility and conformal molding to the substrate surface, the stamp was made with a thickness of 1-2mm. The stamp was vacuum baked at 160°C for ~4 hours to ensure the PDMS was fully cured and would not undergo permanent deformation during imprint. The stamp was used along with the deposited chalcogenide film wafer in a home built thermal imprint tool shown schematically in Fig. 1
Fig. 1 Schematic diagram of the imprinting chambers.
.

Here the wafer with the stamp in contact sat on a hotplate with an elastic membrane suspended above it, this being vacuum sealed back to the hotplate surface. A second sealed chamber lay above the membrane. By evacuating both chambers but keeping the upper one at slightly lower pressure, the membrane bows up and all the air can be removed from the stamp. The hotplate was then heated to 190°C, and 2 atmospheres of pressure applied to the upper chamber. The membrane elastically deformed applying the pressure isobarically to the stamp to create the imprint. After ~20 minutes the hotplate was flash cooled at ~40°C/min rate by forcing compressed air through a cooling chamber incorporated in the bottom surface of the hotplate. Upon cooling below the glass transition temperature, both chambers were vented and the sample removed. The stamp was released by peeling it off by hand, the radically different compositions of the stamp and the films plus the low surface energy of PDMS ensuring there was no adhesion to the molded glass surface. Figure 2
Fig. 2 SEM images of imprinted rib waveguide in As24Se38S38 Chalcogenide glass.
shows some typical SEM images of the imprinted waveguides from which it is clear that very smooth sidewalls have been obtained.

Compared to the UV imprinted waveguides made with stamps fabricated by the same process [16

16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]

], the sidewalls here are much smoother. It is likely that this results from pressure based smoothing of “high points” in the stamp coupled with softening of the stamp at the high process temperatures. A layer of RPO Pty Ltd IPGTM spin-on Polysiloxane upper cladding was then applied and cured, and end facets hand cleaved on the chip with a diamond scriber leaving a finished rib waveguide with the profile shown in Fig. 3
Fig. 3 Cross sectional optical microscope view of the finished imprinted rib waveguide.
. Inspection of the imprinted films showed no cracking despite the high thermal expansion coefficient of chalcogenide glasses and the contrasting low expansion coefficient of the silica undercladding.

Measurements and results

Measurements of the losses of the imprinted waveguides were made using the cut-back technique at 1550nm, first measuring the full sample and then cleaving this into two pieces constituting 1/3 and 2/3 of the original length. Measurements were performed using lensed fibers with a 2.5μm 1/e2 mode field diameter to couple to the sample, and were taken at each length with an external cavity tunable laser (with frequency dither to average out chip Fabry-Perot resonances) and power meter. A fibre coupled mercury arc lamp source and an Agilent 86142B optical spectrum analyzer were also used to obtain the wavelength dependent propagation loss at each length. The waveguides displayed considerable amounts of mode coupling/beating that manifested itself as a strong random (from waveguide to waveguide) wavelength dependence of the insertion loss [20

20. S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low Loss Etched Ge33As12Se55 Chalcogenide Waveguides, Proc ACOFT-AOS 2006, 75-78, (2006).

]. The laser-based measurements were therefore taken by sweeping the laser over ~100nm and reading the minimum loss, and the OSA data were taken with a 10nm resolution bandwidth to try to average out such effects. Figure 4
Fig. 4 Insertion loss of 3.3μm wide waveguides measured using cutback method.
shows the cut back results for launched TE and TM modes in 5 waveguides of 3.3μm width based on the tunable laser/power meter measurement. Measurement uncertainty was verified at +/−0.1dB via repeated measurements.

Losses for 1µm high by 3.3µm wide As24Se38S38 waveguides were 0.26dB/cm for TM polarization and 0.27dB/cm for TE polarization. Given the estimated 1.5μm2 mode area from R-Soft FEMSIM calculations, these values are comparable with the best we have obtained when fabricating waveguides using standard photolithography and dry etching [7

7. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]

] and indicate that this simple single step thermal imprinting approach can produce high quality ribs with dimensions matching those required for dispersion engineering [17

17. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]

]. However given the physical quality of the waveguides seen in Fig. 2, the measured losses are surprisingly high. To seek understanding of this, the wavelength dependence of the loss was studied.

A typical result for the wavelength dependence of the propagation loss is shown in Fig. 5
Fig. 5 Measured Optical propagation loss spectrum of 3.3μm wide waveguide.
. The propagation loss was obtained by subtracting the measured spectrum at 1.9 cm from that at 6.7 cm, which removes all the other wavelength dependent effects (e.g. lamp spectrum, coupling, etc). Also shown in Fig. 5 are curves following 1/λ2 and 1/λ4 dependence fitted by pinning the loss at the 1550nm point to the measured cut back loss value. The propagation loss does not follow the 1/λ2 dependence expected for sidewall scattering induced losses [18

18. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971). [CrossRef] [PubMed]

], but rather the 1/λ4 dependence exhibited by scattering off nanoscale inhomogeneities as Rayleigh scattering. Note that the input fibre goes multimode below 1100nm causing additional loss in the measured results below that wavelength. This also fits with the SEM images of Fig. 2 which show no appreciable sidewall roughness. The question then arises whether the losses resulted from the film itself or were induced in the film by the high temperature processing, e.g [19

19. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]

].

To investigate the raw film losses, light was coupled into a Chalcogenide glass film before the thermal imprinting process using a Metricon prism coupler and the film loss measured by imaging the top surface scattering loss at various wavelengths with a Xenics cooled InGaAs camera. The results are shown in Fig. 6
Fig. 6 Measured wavelength dependence of film propagation loss.
. The as-deposited thin film has a similar wavelength dependence of loss to the imprinted waveguide. This suggests that Rayleigh scattering, most likely due to phase separated clusters (known to occur in chalcogenide glasses) in the as-deposited films, was the source of the 1/λ4 dependence. The losses at 1550nm are ~0.1dB/cm lower in the films that the waveguides, and we believe this is a result of increased phase separation after high temperature treatment [19

19. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]

]. This implies that much lower losses should be possible in imprinted waveguides by using compositions that lead to more homogeneous films.

Conclusion

Acknowledgements

The support of the Australian Research Council through its Centres of Excellence program is gratefully acknowledged.

References and links

1.

C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]

2.

J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]

3.

A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]

4.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]

5.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]

6.

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]

7.

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]

8.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]

9.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]

10.

D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008). [CrossRef]

11.

H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]

12.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003). [CrossRef]

13.

W. J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T. M. Benson, and A. B. Seddon, “One-step hot embossing of optical rib waveguides in chalcogenide glasses,” Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008). [CrossRef]

14.

M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]

15.

Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]

16.

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]

17.

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]

18.

P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971). [CrossRef] [PubMed]

19.

R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]

20.

S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low Loss Etched Ge33As12Se55 Chalcogenide Waveguides, Proc ACOFT-AOS 2006, 75-78, (2006).

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4360) Nonlinear optics : Nonlinear optics, devices
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: June 18, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 20, 2010
Published: August 26, 2010

Citation
Ting Han, Steve Madden, Douglas Bulla, and Barry Luther-Davies, "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography," Opt. Express 18, 19286-19291 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19286


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  4. M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]
  5. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  6. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  7. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  8. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  9. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]
  10. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008). [CrossRef]
  11. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]
  12. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003). [CrossRef]
  13. W. J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T. M. Benson, and A. B. Seddon, “One-step hot embossing of optical rib waveguides in chalcogenide glasses,” Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008). [CrossRef]
  14. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]
  15. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]
  16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]
  17. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  18. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971). [CrossRef] [PubMed]
  19. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]
  20. S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low Loss Etched Ge33As12Se55 Chalcogenide Waveguides, Proc ACOFT-AOS 2006, 75-78, (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited