OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19361–19366
« Show journal navigation

Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity

Seung-Woo Jeon, Jin-kyu Han, Bong-Shik Song, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19361-19366 (2010)
http://dx.doi.org/10.1364/OE.18.019361


View Full Text Article

Acrobat PDF (1473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

© 2010 OSA

1. Introduction

A photonic crystal structure with a photonic bandgap (PBG) can propagate photons along an arbitrary direction and strongly confine photons in a region of sub-wavelength scale [1

1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]

]. Photonic crystal-based devices such as waveguides and nanocavities can be used for various applications including ultrasmall optical filters [2

2. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]

], ultralow-power and ultrafast switches [3

3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

], nonlinear optics [4

4. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]

], and quantum processing [5

5. C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009). [CrossRef]

]. In particular, two-dimensional (2D) photonic crystal slab structures are not only relatively easy to fabricate, but also serve as platforms of in-plane integration. Such 2D photonic crystal structures feature in-plane optical confinement by the 2D PBG effect and vertical confinement by the high contrast between the refractive index of the dielectric slab (e.g., silicon) and that of its surrounding medium (e.g., air). These high contrasts can reduce the leaky region of light—the so-called light-line in the waveguide or cavities; indeed, high-performance photonic crystal devices have been realized in air-membrane structures [1

1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]

5

5. C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009). [CrossRef]

]. However, the mechanical and thermal instabilities of air-membrane structures have been ones of the obstacles to their application and heterogeneous integration. Furthermore, when air-membrane structures are exposed to air, continuous oxidation and unavoidable contaminations can affect the characteristics of photonic devices [6

6. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006). [CrossRef]

]. Although there have been some photonic crystal structures fabricated on supporting substrates with low refractive indices [7

7. Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003). [CrossRef]

11

11. M.-H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007). [CrossRef] [PubMed]

], the structures are not immune to the abovementioned problems because they are still exposed to air. More seriously, the performance of the photonic devices can degrade because of a loss of coupling between the transverse electric (TE) and transverse magnetic (TM) modes in asymmetric structures [9

9. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006). [CrossRef]

,10

10. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006). [CrossRef]

]. In this work, we investigate a glass-embedded photonic crystal device (Fig. 1(a)
Fig. 1 (a) A schematic of a glass-embedded two-dimensional photonic crystal device consisting of a waveguide and a nanocavity. (b) The calculated photonic band diagram of the photonic crystal structure (t = 0.6a, d = 0.58a)
) to improve the mechanical stability of the 2D photonic crystal slab structure and avoid the coupling loss between the TE and TM modes. We theoretically and experimentally demonstrate a single-mode waveguide with a band width of 90 nm and a high quality (Q) nanocavity with a Q factor of up to 160,000. This Q factor is the highest recorded value for a photonic crystal nanocavity with cladding material [12

12. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006). [CrossRef] [PubMed]

].

2. Design of glass-embedded photonic crystal devices

3. Fabrication of glass-embedded photonic crystal devices

Next, we fabricated a glass-embedded silicon photonic crystal structure. A 2D photonic crystal structure was fabricated on a SOI wafer. The wafer consisted of a top layer of silicon 220 nm thick and a bottom layer of thermal silicon dioxide (SiO2) 3μm thick. The photonic crystal patterns were formed in the silicon layer using electron beam lithography and plasma etching. Scanning electron microscope (SEM) images of the top surface of the photonic crystal structure, from above and in a cross-section, are shown in Figs. 3(a) and (b)
Fig. 3 (a) Top view and (b) cross-sectional SEM images of the silicon photonic crystal devices on an insulator before coating spin-on glass (SOG). (c) Optical microscope image of the photonic crystal device after coating SOG, and (d) cross-sectional SEM image of the glass-embedded photonic crystal structure.
, respectively. Subsequently, a SOG of hydrogen silsesquioxane with tunable and low refractive indices [15

15. H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998). [CrossRef]

,16

16. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008). [CrossRef] [PubMed]

] was coated on the fabricated structure and cured at a temperature of 400°C for 1 h under nitrogen atmosphere. As seen in Figs. 3(c) and (d), the SOG uniformly coats the surface, and infiltrates the holes up to a depth of 530 nm from the silicon surface. According to our calculations, the thickness of the SOG layer does not affect the characteristics of the cavities considered here.

4. Results and discussion

5. Conclusion

In summary, to enhance the mechanical stability of a photonic crystal device and maintain its excellent performance, we investigated SOG-embedded silicon photonic crystal devices possessing waveguides and nanocavities on a SOI substrate. We experimentally demonstrated a transmission bandwidth of ~90 nm in a waveguide and a Q factor of 1,000 in L3 cavities. Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying its curing temperature. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultra-high Q factor of 160,000—the highest recorded value for a photonic nanocavity with cladding material. These results should stimulate further application and integration of mechanically stable photonic crystal devices with excellent properties.

Acknowledgments

This work was supported by the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovation R&D on Science and Technology (FIRST Program)", WCU program (R32-2008-000-10204-0), Basic Science Research Program (2009-0075495), and OPERA (R11-2003-022) of the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science, and Technology.

References and links

1.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]

2.

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]

3.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

4.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]

5.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009). [CrossRef]

6.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006). [CrossRef]

7.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003). [CrossRef]

8.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003). [CrossRef]

9.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006). [CrossRef]

10.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006). [CrossRef]

11.

M.-H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007). [CrossRef] [PubMed]

12.

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006). [CrossRef] [PubMed]

13.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]

14.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]

15.

H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998). [CrossRef]

16.

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008). [CrossRef] [PubMed]

17.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005). [CrossRef]

18.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]

19.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ∼ 109,” J. Lightwave Technol. 26(11), 1532–1539 (2008). [CrossRef]

20.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010). [CrossRef]

21.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: July 19, 2010
Revised Manuscript: August 18, 2010
Manuscript Accepted: August 24, 2010
Published: August 26, 2010

Citation
Seung-Woo Jeon, Jin-kyu Han, Bong-Shik Song, and Susumu Noda, "Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity," Opt. Express 18, 19361-19366 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007). [CrossRef]
  2. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003). [CrossRef] [PubMed]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).
  4. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  5. C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009). [CrossRef]
  6. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006). [CrossRef]
  7. Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003). [CrossRef]
  8. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003). [CrossRef]
  9. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006). [CrossRef]
  10. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006). [CrossRef]
  11. M.-H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007). [CrossRef] [PubMed]
  12. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006). [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  15. H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998). [CrossRef]
  16. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008). [CrossRef] [PubMed]
  17. T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005). [CrossRef]
  18. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  19. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ∼ 109,” J. Lightwave Technol. 26(11), 1532–1539 (2008). [CrossRef]
  20. M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010). [CrossRef]
  21. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited