OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20298–20304
« Show journal navigation

Thermally tunable silicon racetrack resonators with ultralow tuning power

Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20298-20304 (2010)
http://dx.doi.org/10.1364/OE.18.020298


View Full Text Article

Acrobat PDF (1037 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without undercuts. The 10%-90% switching time is demonstrated to be ~170 µs. Such low-power tunable micro-resonators are particularly useful as multiplexing devices and wavelength-tunable silicon microcavity modulators.

© 2010 OSA

1. Introduction

In this paper, we report thermally tunable racetrack resonators with an ultralow tuning power of 2.4 mW per FSR, facilitated using free-standing structures with undercuts beneath the resonators. This tuning power is almost one order of magnitude lower than those of previously reported similar devices without undercuts. In addition, the 10%-90% switching time is about 170 µs. The demonstrated device is particularly important in applications such as wavelength-tunable microcavity modulators (to realize wavelength tunability rather than high speed modulation) and WDM filters where the tuning time is not required to be very fast but the tuning power must be minimized.

2. Device structure and fabrication

Device fabrication up to air trench formation has been described in Ref [14

14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

]. The steps include sequential silicon waveguide etching, oxide cladding, heater/metal traces fabrication, and air trench anisotropic etching. We then apply an SF6 isotropic dry etch to achieve the undercut structures. Figure 2
Fig. 2 Tilted top-view SEM for two fully fabricated free-standing racetrack resonators with a 4 µm bend radius (a) and a 10 µm bend radius (b).
shows the tilted top-view scanning electron microscopy (SEM) images of two fully fabricated devices with different resonator sizes. In these devices, the resonators have a racetrack shape with straight coupling lengths of 11 µm and bending radii of 4 µm [Fig. 2(a)] and 10 µm [Fig. 2(b)]. The suspended membranes are supported by oxide beams to avoid bending. The trench widths, as shown in Fig. 2, are 6.5 µm. In general, the thicker the suspended membranes, the more stable the structures in terms of mechanical stability. Our suspended membranes have a total thickness of about 5 µm, and very few devices are found broken or bent after full fabrication. In addition, one can always reduce the trench areas to increase the dimensions of supporting oxide beams to increase the mechanical stability.

3. Test results

In practical applications, it is important to keep high optical performance during large-range tuning. It is seen that the extinction ratios vary during thermal tuning in Fig. 3(a) and Fig. 4(a). This variation may be attributed to non-uniform heating over the resonators [24

24. H. L. R. Lira, J. Cardenas, and M. Lipson, “High performance add-drop filter tunable over large spectral range,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CFE1.

]. A more uniform heating design has been reported in Ref [24

24. H. L. R. Lira, J. Cardenas, and M. Lipson, “High performance add-drop filter tunable over large spectral range,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CFE1.

]. to keep high extinction ratios over a large tuning range. In our devices, the quality factors are approximately 8,000, nevertheless, these low quality factors are mainly due to the coupling to drop waveguides rather than resonator waveguide scattering loss.

For the demonstrated free-standing resonators, the tuning efficiency is enhanced at the expense of reduced tuning speed. We measured the tuning speed for the device shown in Fig. 2(a) by driving the heater with a 0.5 kHz square-wave voltage signal. The input wavelength is set at the resonance of the resonator at 0 V. The 10%-90% switching time is measured as ~170 µs and ~150 µs for the optical rise edge and the fall edge, respectively (Fig. 5
Fig. 5 Temporal response of the resonator in Fig. 2(a). The green line represents the electrical drive signal with a voltage swing of 0.5 V, and the blue line indicates the optical transmission at the through port. 10%-90% switching times were measured as ~170 µs for the rise time and ~150 µs for the fall time.
). This switching time is about one order magnitude longer than for the device without undercuts [14

14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

], and comparable with those for MZI devices with undercuts [22

22. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010). [CrossRef] [PubMed]

]. Table 1

Table 1. Tuning power and speed comparison of some of previously demonstrated thermally tuned silicon microcavities and the device presented in this work

table-icon
View This Table
summarizes tuning powers per FSR and tuning speed for some of the reported thermally tunable microcavities we found in the literature. There are mainly three groups: (1) metal heaters on top of silicon waveguide cladding without undercuts [12

12. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]

,14

14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

,16

16. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.

], (2) silicon waveguide heaters fabricated by doping and annealing [20

20. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference, (CLEO/QELS 2009), pp. 1 – 2.

], and (3) metal heaters with undercuts (our current devices). Both devices from group 1 and 2 exhibit an optimal tuning power ~20 mW per FSR, however, the speed for metal heaters in the first group is about 10 times slower than for silicon waveguide heaters. Undercut structures can significantly reduce the tuning power, but with slower tuning speed (~170 µs). In order to choose a proper heater for a particular application, one may need to consider the required speed and power together with fabrication complexity. Metal heaters, compared with silicon waveguide heaters, have the advantage including simple fabrication without ion implantation and annealing, and negligible excess loss from heaters.

4. Discussion and conclusion

The wavelength tunability required for silicon microcavity modulators and WDM filters needs to have low power consumption, but not necessarily high speed. In practical applications, the environmental temperature may change over a time period far longer than 1 ms. In this case, the ultralow power micro-resonators demonstrated here with response times of ~170 µs may be fast enough. Considering the achieved low tuning power of 2.4 mW per FSR, tunability would add a maximum of ~100 fJ/bit for a data rate of 25 Gbps in an optical link. This low power/energy consumption further validates the use of silicon microcavities to realize chip-level optical interconnects [4

4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]

,5

5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]

]. Beside the power consumption, another concern regards the thermal crosstalk between adjacent microcavities. In our current single microcavity structure, no information on thermal crosstalk can be extracted. However, it is expected that undercuts would increase thermal crosstalk, compared with trenches-only devices in Ref. [14

14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

], since the undercuts block the heating flux to substrates and force the heating flux to oxide membranes. However, thermal crosstalk can be reduced if two adjacent microcavities are separated by air trenches rather than oxides. In on-chip optical networks, each microcavity filter may be close to its own receiver or transmitter sites, so that they are far away from each other. In this case, thermal crosstalk is not an issue. Another concern for microcavities with undercuts is how to implement this configuration for silicon microcavity modulators, which usually require a slab layer to realize carrier injection or extraction. If the slab layer stops before the trenches, the silicon waveguide and metal in the modulator can be well protected during the etching to achieve undercuts. Therefore, it is not difficult to implement this heating configuration with undercuts for active devices such as modulators.

Acknowledgements

The authors acknowledge partial funding of this work by Defense Advanced Research Projects Agency (DARPA) MTO office under UNIC program supervised by Dr. Jagdeep Shah (contract agreement with SUN Microsystems HR0011-08-9-0001). The authors greatly acknowledge Dr. C.-C. Kung, Dr. J. Fong and Dr. B. J. Luff from Kotura Inc. for their work in fabricating of the device and revising the manuscript, and Dr. K. Raj from Sun Labs at Oracle for helpful discussions. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense. Approved for Public Release, Distribution Unlimited.

References and links

1.

R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]

2.

L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y. K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerane, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 6–15 (2006).

3.

B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]

4.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]

5.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]

6.

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]

7.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]

8.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]

9.

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]

10.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE 2008), pp. 4 - 6.

11.

W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO2010), paper CThj4.

12.

M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]

13.

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]

14.

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]

15.

M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).

16.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.

17.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]

18.

D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” Proc. ECIO, pp. 395–398 (2003).

19.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]

20.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference, (CLEO/QELS 2009), pp. 1 – 2.

21.

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]

22.

P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010). [CrossRef] [PubMed]

23.

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).

24.

H. L. R. Lira, J. Cardenas, and M. Lipson, “High performance add-drop filter tunable over large spectral range,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CFE1.

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

History
Original Manuscript: July 15, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 27, 2010
Published: September 8, 2010

Citation
Po Dong, Wei Qian, Hong Liang, Roshanak Shafiiha, Dazeng Feng, Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, and Mehdi Asghari, "Thermally tunable silicon racetrack resonators with ultralow tuning power," Opt. Express 18, 20298-20304 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20298


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  2. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y. K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerane, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, and C. W. Wong, “Electronic–photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 6–15 (2006).
  3. B. Jalali, M. Paniccia, and G. Reed, “Silicon photonics,” IEEE Microw. Mag. 7(3), 58–68 (2006). [CrossRef]
  4. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  5. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  6. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  7. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  9. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009). [CrossRef]
  10. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE 2008), pp. 4 - 6.
  11. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO2010), paper CThj4.
  12. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17(7), 5502–5516 (2009). [CrossRef] [PubMed]
  13. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]
  14. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010). [CrossRef] [PubMed]
  15. M. Popovic, Theory and design of high-index-contrast microphotonic circuits, PhD thesis, (MIT 2008).
  16. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.
  17. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601 (2008). [CrossRef]
  18. D. Geuzebroek, E. J. Klein, H. Kelderman, and A. Driessen, “Wavelength tuning and switching of a thermooptic microring resonator,” Proc. ECIO, pp. 395–398 (2003).
  19. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  20. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant Microrings (ARMs) with directly integrated thermal microphotonics,” in Proceedings of Conference on Quantum electronics and Laser Science Conference, (CLEO/QELS 2009), pp. 1 – 2.
  21. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010). [CrossRef] [PubMed]
  22. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010). [CrossRef] [PubMed]
  23. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant filters,” IEEE Summer Topical Meet. On Optical Networks and Devices for Data Centers 18, 8406–8411 (2010).
  24. H. L. R. Lira, J. Cardenas, and M. Lipson, “High performance add-drop filter tunable over large spectral range,” in Proceedings of Conference on Quantum electronics and Laser Science Conference (CLEO/QELS 2010), paper CFE1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited