OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21219–21224
« Show journal navigation

Vectorial polariton solitons in semiconductor microcavities

W. L. Zhang and S. F. Yu  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21219-21224 (2010)
http://dx.doi.org/10.1364/OE.18.021219


View Full Text Article

Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents numerical studies of vectorial polariton solitons in semiconductor microcavities. In the simulation, polarization degree of freedom of the polariton fields is taken into consideration. In the bistable regime, bright and/or dark solitons are found to bifurcate from the homogonous solutions of the two circular polarization modes. The combinations of solitons in the two polarization directions can be bright-dark, dark-bright, bright-bright, and dark-dark.

© 2010 OSA

1. Introduction

Recently, dark and bright polariton solitons of semiconductor microcavities have been reported [10

10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]

, 15

15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]

] and verified experimentally [2

2. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009). [CrossRef] [PubMed]

, 9

9. Y. Larionova, W. Stolz, and C. O. Weiss, “Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity,” Opt. Lett. 33(4), 321–323 (2008). [CrossRef] [PubMed]

]. However, these studies only considered the scalar polariton solitons, and the polarization of polariton fields was ignored. It is known that the polariton fields in microcavities are vectorial polarization dependence which governed by the underlying spin-dependent polariton-polariton scattering processes. Two possible spins, where are + 1 and –1 correspond to the right circular polarization (RCP) and left circular polarization (LCP) respectively, are supported inside microcavities [16

16. I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and A. Kavokin, “Polarization and propagation of polariton condensates,” Phys. Rev. Lett. 97(6), 066402 (2006). [CrossRef] [PubMed]

18

18. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization multistability of cavity polaritons,” Phys. Rev. Lett. 98(23), 236401 (2007). [CrossRef] [PubMed]

]. This polarization dependence of polaritons adds the complexity of their nonlinearities and provides more flexible ways to form solitons. Hence, it is of great importance to study the polariton solitons with polarization dependence. In this paper, vectorial polariton solitons is studied numerically in a semiconductor microcavity. A modified 4th-order Runge-Kutta method is used to find the soliton solutions. Based on this method, various combinations of polariton solitons in the two polarization directions are detected and analyzed for both vertical and oblique pumping.

2. Theoretical model

The polariton fields are usually described by two coupled equations for their excitonic and photonic components. We start our discussions with the polarization-resolved dimensionless model for the intracavity photon field, E, and for the exciton field, ψ [10

10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]

, 15

15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]

19

19. D. V. Skryabin, O. A. Egorov, A. V. Gorbach, and F. Lederer, “One-dimensional polariton solitons and soliton waveguiding in microcavities,” Superlattices Microstruct. 47(1), 5–9 (2010). [CrossRef]

]
tE1,2=i(x2+2ikinxkin2)E1,2(γpiδ)E1,2+iψ1,2+Ein1,in2
(1)
tψ1,2=iE1,2(γeiδ)ψ1,2i(|ψ1,2|2+η|ψ2,1|2)ψ1,2
(2)
where subscripts 1 and 2 correspond to the RCP and LCP modes, respectively. γp (γc) is the photon (exciton) decay rate normalized to the Rabi frequency, Ω. δ is the normalized frequency detuning, i.e., δ = (ωinω 0)/Ω wherein ωin is the pump frequency and ω 0 denotes the identical resonance frequency of exciton and cavity. The time, t, transverse coordinate, x, and wave number, kin, are normalized to 1/Ω, x 0, and 1/x 0 respectively. x 0 = c2/2n2ωinΩ, where c is the vacuum light velocity and n is the refractive index. The nonlinear terms in (2) denote the contributions of exciton-exciton interctions in the same (|ψ 1,2|2 ψ 1,2) and opposite (η|ψ 2,1|2 ψ 1,2) polarization directions.

For zero-pumping condition, if we neglect the nonlinear effect and assume E 1,2 = E 1 s ,2 sexp(ikx), ψ 1,2 = ψ 1 s ,2 sexp(ikx) and ω 0 = 0, the dispersion relationship of polaritons can be obtained through the eigenvalues of coupled Eqs. (1) and (2). This paper only refer to the lower polariton branch, ELP, and it can be expressed as [10

10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]

, 15

15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]

]

ELP(k)=12[k2i(γp+γe)]12[k2+i(γeγp)]2+4
(3)

In the following simulations, we concentrate our investigation on the bistable regime and the excitonic component is taken as an example to discuss polariton solitons. Typical parameters of a GaAs/AlAs microcavity with InGaAs/GaAs quantum wells as the gain region are used to model cavity polaritons [10

10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]

, 15

15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]

17

17. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of coherent polariton beams in microcavities: polarization-controlled optical gates,” Phys. Rev. Lett. 99(19), 196402 (2007). [CrossRef]

]. Hence, the values of the mentioned parameters are assumed to be: η = –0.1, γp = 0.1, γe = 0.1, Ein 1 = Ein, and Ein 2 = 0.8Ein. δ, kin and Ein are variables to be specified latter.

3. Pumping at normal incidence

In this section, we consider the case of normal incidence, i.e., kin = 0. Figure 1
Fig. 1 The homogenous solutions of the excitonic components of the polaritons as a function of pumping strength, Ein, for kin = 0 and δ = −0.7.
shows the homogonous solutions of the excitonic components of polaritons in the two polarization directions. The solid (dotted) curves mark the stable (instable) states. We can see that the two polarization modes show a distinct ‘S’ shape as a function of pump strength, Ein. Because the pumping into the two polarization modes is asymmetric, the hysteresises of the two modes are not overlapped. A vertical-broken line separates Fig. 1 into two regions. In region I (II), the RCP (LCP) mode exhibits a dominate hysteresis. Its counterpart, the LCP (RCP) mode, also shows a reverse (similar) hysteresis due to nonlinear interaction between the two modes.

Next, the solutions of vectorial solitons are searched along the bistable curves of the homogenous solutions, and the results are given in Fig. 2
Fig. 2 Maxima (minima) of the excitonic components of bright (dark) polariton solitons as a function of pumping strength, Ein, for kin = 0 and δ = −0.7. The solid-dotted curves represent the background amplitude, and the squares (dots) denote the peak (dip) values of the bright (dark) solitons.
. The squares (dots) denote the peak (dip) values of bright (dark) solitons, and the stable solitons are also marked by solid lines. Figures 2(a) and (c) correspond to region I. In Fig. 2(a), a branch of bright and a branch of dark solitons are found to bifurcate from the homogonous solutions of the RCP mode. The entire branch of bright solitons is unstable, and the branch of dark solitons is separated into a stable and an unstable part by a fold bifurcation point. Furthermore, due to nonlinear interaction, the bright (dark) solitons of RCP mode also arouse small-amplitude dark (bright) solitons in the LCP mode, see Fig. 2(c). Hence, vectorial bright-dark and dark-bright solitons are found in region I. In region II, bright-bright and dark-dark combinations of solitons are found, see Fig. 2(b) and (d).

Figure 3
Fig. 3 The excitonic components of polaritons in time and real space domains. (a) and (b) correspond to, respectively, points P1 and P1’ marked in Fig. 2. For clarity, the dark soliton is plot using negative value of |ψ 2|.
gives an example for the excitation of polariton solitons through the proposed method. Figure 3(a) and (b) correspond to points P1 and P1’ marked in Fig. 2 respectively (i.e., vectorial bright-dark solitons). For clarity, the dark solitons of LCP mode are plot using negative values of |ψ 2|. We can see that the profiles of ψ 1 and ψ 2 become unchanged after a short time interval of oscillations from t = 0. It is also noted that the solitons are stationary, i.e., the peak position of solitons in the x direction does not change with time.

Figure 4
Fig. 4 Profiles of the excitonic components of polaritons. (a) – (f) correspond to, respectively, points P2, P3, P4, P2’, P3′, and P4’ marked in Fig. 2.
shows the profiles of other types of vectorial solitons, i.e., dark-bright, bright-bright, and dark-dark solitons that correspond to points P2 – P2’, P3 – P3′ and P4 – P4’ respectively marked in Fig. 2. These entangled states of vectorial solitons induce additional flexibilities and are thought to provide a promising way for information processing.

4. Pumping at oblique incidence

This section considers the case at oblique incidence. We choose kin = 1.7, δ = –0.03, and the microcavity maintains within the bistable regime. In this case, the bistable curves and the maxima (minima) of bright (dark) solitons are given in Fig. 5
Fig. 5 Maxima (minima) of the excitonic components of bright (dark) polariton soliton as a function of pump strength, Ein, for kin = 1.7 and δ = −0.03. Other descriptions are the same as those of Fig. 2.
. In Fig. 5(a), we find a branch of bright solitons for the RCP mode. Different from the case of normal incidence, a part of the bright solitons becomes stable. In the branch of solitons, the solutions are stable (instable) above (below) the fold bifurcation point, which is in accordance with the result of [15, 19]. Corresponding to the bright solitons of RCP mode, a branch of dark solitons of LCP mode is found in Fig. 5(c). Thus, vectorial bright-dark solitons are formed. In region II, vectorial bright-bright solitons are found, see Fig. 5(b) and (d).

Figure 6
Fig. 6 The excitonic components of polaritons in time and real space domains. (a) and (b) correspond to, respectively, points P1 and P1’ marked in Fig. 5. For clarity, the dark soliton is plot using negative value of |ψ 2|.
repeats the plot of Fig. 3 except that the pumping is oblique, i.e., kin = 1.7. In this case, the profiles of the solitons become asymmetric and the solitons is nonstationary. From Fig. 6, the velocity of the solitons is deduced to be 0.31. It is close to the first order dispersion of the polariton, ∂kELP, which equals 0.3 for kin = 1.7.

From the above results, we can see that the vectorial solitons are the combinations of a strong and a weak solitons in the two polarization directions. In region I (II), the strong and weak solitons are of the same (reverse) type. However, these results are obtained from a relative small value of |η|. In some cases (i.e., the active region has multiple quantum wells), the value of |η| may be even larger. Strong nonlinear interactions can greatly change the entangled solitons in the two polarization directions. In Fig. 7
Fig. 7 Maxima (minima) of the excitonic components of bright (dark) polariton solitons as a function of pump strength, Ein, for kin = 1.7, δ = −0.03, and η = −0.5. Other descriptions are the same as those of Fig. 2.
, η = –0.5 is considered and the results correspond to region II. Different from the case for η = –0.1 (i.e., vectorial bright-bright solitons are found in region II), the combination of solitons is dark-bright, and the amplitudes of solitons are large for both polarizations. We also find that all the soliton solutions are stable.

5. Conclusion

In conclusion, we have analyzed the formation of vectorial polariton solitons in semiconductor microcavities. In the simulation, RCP and LCP polaritons are in different bistable regimes due to an asymmetric pumping. For normal pumping, bright and dark solitons can bifurcate from homogonous solutions of one polarization mode which shows a dominant bistability. In the counterpart polarization mode, reverse (in region I) or same (in region II) types of solitons with small amplitudes are aroused due to nonlinear interaction. Thus, vectorial bright-dark, dark-bright, bright-bright, and dark-dark solitons are found. For oblique pumping, bright-dark and bright-bright solitons are found in regions I and II respectively. Moreover, there is a fold bifurcation point separating the soliton branchs into a stable and an instable part. The strength of nonlinear interaction between the two plarization modes also plays an important role in the formation of solitons, i.e., when the two polarization modes have strong interactions, they have reverse types of solitons in region II, and the amplitudes of solitons for both modes are large.

Acknowledgments

The authors gratefully acknowledge the support of A*STAR SERC grant no. 082-101-0016 and LKY PDF 2/08 startup grant.

References and links

1.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]

2.

A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009). [CrossRef] [PubMed]

3.

A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69(2), 023809 (2004). [CrossRef]

4.

D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101(26), 266402 (2008). [CrossRef] [PubMed]

5.

C. Ciuti and I. Carusotto, “Quantum fluid effects and parametric instabilities in microcavities,” Phys. Status Solidi 242(11), 2224–2245 (2005). [CrossRef]

6.

D. Sarchi, M. Wouter, and V. Savona, “Polariton parametric photoluminescence in spatially inhomogeneous systems,” Phys. Rev. B 79(16), 165315 (2009). [CrossRef]

7.

K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton-polariton condensate,” Nat. Phys. 4(9), 706–710 (2008). [CrossRef]

8.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007). [CrossRef] [PubMed]

9.

Y. Larionova, W. Stolz, and C. O. Weiss, “Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity,” Opt. Lett. 33(4), 321–323 (2008). [CrossRef] [PubMed]

10.

A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]

11.

A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17(24), 21732–21737 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21732. [CrossRef] [PubMed]

12.

G. Tissoni, L. Spinelli, L. Lugiato, M. Brambilla, I. Perrini, and T. Maggipinto, “Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Express 10(19), 1009–1017 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-19-1009. [PubMed]

13.

Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100(1), 013907 (2008). [CrossRef] [PubMed]

14.

X. Hachair, G. Tissoni, H. Thienpont, and K. Panajotov, “Linearly polarized bistable localized structure in medium-size vertical-cavity surface-emitting lasers,” Phys. Rev. B 79, 011801 (2009).

15.

O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]

16.

I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and A. Kavokin, “Polarization and propagation of polariton condensates,” Phys. Rev. Lett. 97(6), 066402 (2006). [CrossRef] [PubMed]

17.

C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of coherent polariton beams in microcavities: polarization-controlled optical gates,” Phys. Rev. Lett. 99(19), 196402 (2007). [CrossRef]

18.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization multistability of cavity polaritons,” Phys. Rev. Lett. 98(23), 236401 (2007). [CrossRef] [PubMed]

19.

D. V. Skryabin, O. A. Egorov, A. V. Gorbach, and F. Lederer, “One-dimensional polariton solitons and soliton waveguiding in microcavities,” Superlattices Microstruct. 47(1), 5–9 (2010). [CrossRef]

OCIS Codes
(260.5430) Physical optics : Polarization
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 13, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 16, 2010
Published: September 22, 2010

Citation
W. L. Zhang and S. F. Yu, "Vectorial polariton solitons in semiconductor microcavities," Opt. Express 18, 21219-21224 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009). [CrossRef] [PubMed]
  3. A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69(2), 023809 (2004). [CrossRef]
  4. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101(26), 266402 (2008). [CrossRef] [PubMed]
  5. C. Ciuti and I. Carusotto, “Quantum fluid effects and parametric instabilities in microcavities,” Phys. Status Solidi 242(11), 2224–2245 (2005). [CrossRef]
  6. D. Sarchi, M. Wouter, and V. Savona, “Polariton parametric photoluminescence in spatially inhomogeneous systems,” Phys. Rev. B 79(16), 165315 (2009). [CrossRef]
  7. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton-polariton condensate,” Nat. Phys. 4(9), 706–710 (2008). [CrossRef]
  8. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  9. Y. Larionova, W. Stolz, and C. O. Weiss, “Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity,” Opt. Lett. 33(4), 321–323 (2008). [CrossRef] [PubMed]
  10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]
  11. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17(24), 21732–21737 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21732 . [CrossRef] [PubMed]
  12. G. Tissoni, L. Spinelli, L. Lugiato, M. Brambilla, I. Perrini, and T. Maggipinto, “Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Express 10(19), 1009–1017 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-19-1009 . [PubMed]
  13. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100(1), 013907 (2008). [CrossRef] [PubMed]
  14. X. Hachair, G. Tissoni, H. Thienpont, and K. Panajotov, “Linearly polarized bistable localized structure in medium-size vertical-cavity surface-emitting lasers,” Phys. Rev. B 79, 011801 (2009).
  15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]
  16. I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and A. Kavokin, “Polarization and propagation of polariton condensates,” Phys. Rev. Lett. 97(6), 066402 (2006). [CrossRef] [PubMed]
  17. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of coherent polariton beams in microcavities: polarization-controlled optical gates,” Phys. Rev. Lett. 99(19), 196402 (2007). [CrossRef]
  18. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization multistability of cavity polaritons,” Phys. Rev. Lett. 98(23), 236401 (2007). [CrossRef] [PubMed]
  19. D. V. Skryabin, O. A. Egorov, A. V. Gorbach, and F. Lederer, “One-dimensional polariton solitons and soliton waveguiding in microcavities,” Superlattices Microstruct. 47(1), 5–9 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited