OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22099–22104
« Show journal navigation

Coherent frequency-down-conversion interface for quantum repeaters

Noé Curtz, Rob Thew, Christoph Simon, Nicolas Gisin, and Hugo Zbinden  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22099-22104 (2010)
http://dx.doi.org/10.1364/OE.18.022099


View Full Text Article

Acrobat PDF (1007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a coherence-preserving photon frequency down-conversion experiment based on difference-frequency generation in a periodically poled Lithium niobate waveguide, at the single-photon level. The coherence of the process has been demonstrated by measuring the phase coherence of pseudo single-photon time-bin qubits after frequency conversion with an interference visibility of > 96 %. This interface could be of interest for quantum repeater based hybrid networks.

© 2010 Optical Society of America

1. Introduction

Quantum communication is the most advanced application at the single quanta level [1

1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]

]. However, while point-to-point quantum key distribution (QKD) systems become more industrialized [2

2. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high-speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]

], the extension of these systems to long distances will require quantum repeater architectures [3

3. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]

]. The crucial element for quantum repeaters are quantum memories (QM) [4

4. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” (2009). arXiv:0906.2699.

] where, currently, all but one [5

5. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010). [CrossRef] [PubMed]

] operate outside of the telecommunication band. Therefore, for the majority of protocols, a coherent means of mapping these systems to fiber optic communication wavelengths is essential.

The process we present here, is, in a sense, the inverse of what was previously demonstrated for a SFG quantum interface (QI) [13

13. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]

]. The importance of this change from SFG to DFG is that the SFG is used to convert the telecom source to the QM wavelength to be stored, for example by an (absorptive) QM [6

6. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef] [PubMed]

, 7

7. I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1–7 (2010). [CrossRef]

], and as such reduces the efficiency of the storage. On the other hand, DFG takes the (emissive) QM [9

9. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef] [PubMed]

, 10

10. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Entanglement demonstration of a BDCZ quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef] [PubMed]

, 11

11. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323(5913), 486–489 (2009). [CrossRef] [PubMed]

, 12

12. W. Rosenfeld, S. Berner, J. Volz, M. Weber, and H. Weinfurter, “Remote preparation of an atomic quantum memory,” Phys. Rev. Lett. 98(5), 050504 (2007). [CrossRef] [PubMed]

] wavelength photon and converts it to the telecom band for transmission, affecting only the transmission losses. This later case has a much reduced impact on the scaling of quantum repeater architectures. Some of the leading emissive QMs use Cs (852 nm) [9

9. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef] [PubMed]

] or Rb (780 nm) [10

10. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Entanglement demonstration of a BDCZ quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef] [PubMed]

] ensembles, single ions at 370 nm [11

11. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323(5913), 486–489 (2009). [CrossRef] [PubMed]

], or atoms at 780 nm [12

12. W. Rosenfeld, S. Berner, J. Volz, M. Weber, and H. Weinfurter, “Remote preparation of an atomic quantum memory,” Phys. Rev. Lett. 98(5), 050504 (2007). [CrossRef] [PubMed]

]. Even at 780 nm the losses in fiber amount to around 4 dB km−1 and at 370 nm fiber transmission is simply not an option [4

4. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” (2009). arXiv:0906.2699.

]. As such, there is a clear need for a frequency conversion interface for a large number of the most promising atomic systems targeting quantum repeaters.

Fig. 1 Elementary link for entanglement creation between two quantum memories. Probability of success is enhanced as the quantum interfaces convert the photons’ wavelength before propagation through the fibers. Once two adjacent elementary links are established, entanglement can be further distributed through swapping procedures.

Optical frequency conversion has already been proposed and tested for converting telecom wavelengths to the visible regime for a wide variety of purposes. Among frequency converting interfaces, or QIs in general, teleportation [18

18. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecom wavelengths,” Nature 421, 509–513 (2003). [CrossRef] [PubMed]

] provides prohibitively low rates of successful events, limiting the conversion operating speed. SFG, or up-conversion, has been used for improved telecom single photon detection for QKD systems [19

19. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006). [CrossRef]

, 20

20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]

, 21

21. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency conversion,” Opt. Lett. 29(13), 1449–1451 (2004). [CrossRef] [PubMed]

, 22

22. A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. of Mod. Opt. 51, 1433–1445 (2004).

]. In this article we experimentally demonstrate coherent frequency conversion at the single photon level. The advantages and disadvantages of its implementation for quantum repeater schemes is discussed and we detail some of the limitations, practical and fundamental, facing this approach.

2. Difference-Frequency Conversion

The DFG process provides a mechanism that takes the input waves (a photon) and mixes it with a strong pump laser, which can generate an output wave (photon) when the phase matching and energy conservation conditions are satisfied [23

23. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003). [CrossRef]

]. We use a periodically poled Lithium niobate (PPLN) waveguide (W/G) (fabricated by the University of Nice); a potentially long interaction region and a wide variety of wavelength combinations can be realized in these devices.

In this QI experiment, we convert single-photons from 710 nm (the signal) to 1310 nm using a 1550 nm pump laser. These wavelengths are chosen for expediency rather than corresponding to a particular atomic system. The frequency conversion is achieved using a nonlinear process in a type-0 PPLN W/G that is L = 1 cm long; has 6 μm wide guide; has periodic poling of Λ = 14 μm; and is heated to T= 352 K. The W/G has previously been characterized with a normalized sum-frequency generation efficiency of around 80 % W−1 cm−2 [13

13. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]

].

Our set-up is shown on Fig. 2. In the first instance we characterize the efficiency of the conversion process. We bypass the two interferometers, use the 710 nm source in the continuous-wave (cw) mode, and insert an optical attenuator before the detector. We pump the W/G with the vertically polarized 710 nm laser diode (Toptica) in the cw mode. A tunable telecom band laser (Tunics NetTest) is amplified, filtered, vertically polarized, and combined with this on a dichroic mirror (DM) and then the wavelength is scanned to find a peak conversion efficiency (∼ 1552 nm) such that we produce quasi-phase matched photons at 1310 nm. The photons then pass through a filtering stage before being detected by a Free-Running InGaAs/InP APD [24

24. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode single photon counting at telecom wavelengths,” App. Phys. Lett. 91, 201114 (2007).

] that has around 1.6 kHz dark counts at 10 % quantum efficiency. To avoid afterpulsing we set a dead-time of 30 μs, therefore the observed countrates have to be dead-time corrected to determine the number of 1310 nm photons arriving on the detector.

Fig. 2 Experimental set-up to characterize the coherence of the quantum interface (see text). A time-to-amplitude-converter (TAC) records the difference in arrival time between the pulsed laser source and the detection (inset, top right).

The QI efficiency ηQI is defined as the ratio of 1310 nm photons in the fiber located after the filtering stage with respect to 710 nm input photons entering the interface. The number of input photons entering the interface is determined by measuring the 710 nm beam power (250 μW). To determine the number of 1310 nm photons at the output of the interface, we first filter the pump so as to ensure that the photons counted by the detector (minus dark counts) are exclusively at 1310 nm. The filtering stage features a pump (1550 nm) extinction > 190 dB; it consists of a diffraction grating (DG), and two interference filters (IF) centered at 1310 nm. The beam is then coupled into a monomode fiber. This is sufficient to eliminate all residual pump photons. To avoid saturating the detection count rate we attenuate the 1310 nm photons after conversion, with a variable fiber attenuator (Exfo). We then monitor the detector countrate; for instance with 500 mW of pump power we set the variable attenuation to −65.3 dB, count 6 kHz (including 1.6 kHz dark counts), and deduce ηQI. Fig. 3a shows ηQI as a function of the pump power in the waveguide Ppump. Note that the pump laser wavelength is finely tuned as its power varies, as the beam locally heats the W/G and affects the quasi-phase matching. For maximum Ppump (650 mW) we obtain ηQI = 0.13 %. We have evaluated the relative error on the measurements to be ∼ 15%. We can also estimate the number of 1310 nm photons at the output of the W/G. The DG’s first-order diffraction transmits 70% of the 1310 nm light, both the IFs have a transmission of ≈80%, and the coupling into the fiber has been measured at ≲10%. Thus, about 2% of the 710 nm photons entering the W/G leave it as 1310 nm photons.

Fig. 3 Performance of the quantum interface. (a) QI efficiency ηQI as a function of the 1550 nm pump power in the waveguide. (b) Count rates for interfering events detected in the Single Channel Analyzer (SCA) of the TAC for <n> = 1. As the phase of the fiber interferometer is scanned, a net interference visibility of V = 96 % (raw: 84 %) is obtained.

For comparison, we determine the normalized efficiency of the W/G [23

23. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003). [CrossRef]

], where all the photon numbers are now considered inside the waveguide. To determine Ppump, we first measure the power before and after the W/G (42 % transmitted). Taking into account the different losses (Fresnel reflection at the W/G surfaces: 2x14 %, propagation in the W/G: −0.3 dB cm−1) we estimate that 60 % of the light is coupled into the waveguide through the input objective and can deduce Ppump. In the same way we calculate the signal power in the W/G and find a normalized efficiency ηnorm ≈ 13 % W−1 cm−2.

The principal limitation of our system is the difficulty to achieve a good mode matching, i.e. a reasonable overlap between the pump and signal input fields. This could be enhanced with the use of integrated wavelength division multiplexers and mode matching tapers [25

25. K.-D. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]

]. Also, only ∼45 % of the signal beam is coupled in the W/G; with pigtailing [20

20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]

, 25

25. K.-D. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]

] and anti-reflection coatings, this could be improved to > 80 %. Consequently, from an optimized device (W/G conversion efficiency ∼1) [26

26. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998). [CrossRef]

], we would only be limited by the filtering losses but could nervertheless optimistically expect an overall conversion performance ηQI ≳ 50 %.

3. Coherence Preservation

To demonstrate the coherence of the DFG process, we use the complete set-up presented in Fig. 2. The 710 nm laser diode is pulsed at 60 MHz, though a small cw background remains. We mention this component as it introduces a small additional noise in the final measurement. The optical pulsewidth is ∼1 ns. We use two equally unbalanced Michelson interferometers; a bulk one before the waveguide (at 710 nm) and a fiber one afterwards (at 1310 nm). The path difference is Δτ=2.2 ns. For an initial pulse entering the first interferometer, the output can be described by the superposition (our qubit) |φ〉 = |0〉 +e|1〉, where 0 and 1 denote the amplitudes for the photon taking the short and the long paths in the interferometer respectively. We now attenuate the source to ensure that we have a mean photon number <n> ≈ 1 per qubit entering our quantum interface. The 710 nm laser’s pulses are short (< Δτ), with a coherence that is sufficiently small so as to avoid single-photon interference phenomena. Importantly, to ensure the coherence of the overall process we need to ensure that the 1550 nm pump coherence time is ≫ Δτ. Indeed, in the case of atomic systems, it will be necessary to ensure that the pump is more coherent than the emitted photons.

After successful frequency conversion, the qubits, now at 1310 nm, are measured using a fiber Michelson interferometer. In the top right of Fig. 2 we see an histogram, which illustrates the different possible arrival times - the difference between the single photon detection and the oscillator driving our pulsed laser. The measurement is made with a time-to-amplitude converter (TAC). By temporally selecting the central peak (i.e. interfering short-long and long-short paths) using a single channel analyzer (SCA) we project onto the state |φ′〉 = |0〉 +e|1〉. We then vary the phase in the fiber interferometer to scan the phase difference αβ, producing the interference fringes that appear in Fig. 3b. We find a raw visibility of 84 % and a net visibility of 96 %. The net visibility is calculated by subtracting the detector dark counts and the contribution from the converted cw 710 nm light, which accounts for ∼1 % of the peak in the single channel analyzer. The latter number has been determined by shifting the peaks out of the single channel and monitoring the contribution in the countrate on the detector due to the 710 nm source. The widths of the peaks recorded in the histogram are around 1.3 ns due to the 1 ns optical pulsewidth and the 800 ps jitter of the free-running detector (independently measured). Consequently, because of the path-length difference of the interferometers is 2.2 ns, there is a small overlap between central and lateral peaks, slightly degrading the visibility. A small (500 ps) SCA window is used to alleviate this problem.

4. Discussion

Frequency conversion experiments at the single photon level have quite frequently been plagued by excess noise photons [14

14. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]

]. We have used a relatively simple filtering system to achieve a total extinction of the pump. A reason for the absence of any additional noise photons is that the pump wavelength is greater than the target (1310 nm), removing the possibility of SPDC noise and reducing the chance of any Raman processes, compared to the reverse situation [19

19. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006). [CrossRef]

, 20

20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]

]. Indeed, for any atomic system one can efficiently limit the pump noise with a suitable pump, and/or a cascaded DFG scheme [27

27. J. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Advanced architectures for low-noise frequency conversion of quantum states using lithium niobate waveguides,” Boulder SPW poster (2009). http://photon.jqi.umd.edu/.

]. In addition, it is worth mentioning that non-converted 1310 nm photons emitted by our pump are eliminated by a 1550 nm IF placed after the amplifier; without this we would generate a photonic noise increasing linearly with the pump power.

It is worthwhile to consider the potential impact of such an interface on the performance of quantum repeaters. We estimated previously that this type of interface could achieve 50 % overall efficiency; this amounts to 15 km of fiber with losses of 0.2 dB/km. The conversion loss enters linearly for the rates in repeater protocols based on single-photon entanglement (so one just loses a factor of two for 50 % conversion), and quadratically for protocols based on two-photon entanglement. In [4

4. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” (2009). arXiv:0906.2699.

], the authors compare transmission rates for different systems, numbers of elementary links, and protocols; these all assume (implicitely) that there is a quantum interface with 100 % efficiency, i.e. the emitted photons are at 1550 nm. A final remark is that although the type-0 W/G requires a well defined polarization, it doesn’t prevent one implementing this scheme with polarization-encoded qubits, as solutions have previously been demonstrated with only a minor increase in complexity [28

28. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 20(17), 17758–17763 (2009). [CrossRef]

].

5. Conclusion

In this paper, we have demonstrated the coherent frequency down-conversion of weak-coherent-pulse time-bin qubits. The efficiency of the current demonstration is limited to less than 1 percent; however there is great potential for gains using an interface optimized for a given atomic system (potentially > 50 %). We find an interference visibility of > 96%, with no reduction due to the frequency conversion process - no contribution from the pump photons or other parasitic nonlinear processes. Currently, to the best of our knowledge, there is no other practical solution available that can perform this function with such flexibility. Indeed, this flexibility opens up the possibility of using diverse atomic systems in one quantum repeater structure to create hybrid networks that may then take advantage of different quantum technologies.

Acknowledgments

Authors acknowledge support from the Swiss NCCR-Quantum Photonics and the EU FP7 project Q-ESSENCE. We thank C. Barreiro for technical support, University of Nice for providing the waveguide and H. de Riedmatten and S. Tanzilli for useful discussions. While preparing this article similar work has been brought to our attention [29

29. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]

, 30

30. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010). [CrossRef] [PubMed]

].

References and links

1.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]

2.

D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high-speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]

3.

H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]

4.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” (2009). arXiv:0906.2699.

5.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010). [CrossRef] [PubMed]

6.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef] [PubMed]

7.

I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1–7 (2010). [CrossRef]

8.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2010). [CrossRef]

9.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef] [PubMed]

10.

Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Entanglement demonstration of a BDCZ quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef] [PubMed]

11.

S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323(5913), 486–489 (2009). [CrossRef] [PubMed]

12.

W. Rosenfeld, S. Berner, J. Volz, M. Weber, and H. Weinfurter, “Remote preparation of an atomic quantum memory,” Phys. Rev. Lett. 98(5), 050504 (2007). [CrossRef] [PubMed]

13.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]

14.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]

15.

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008). [CrossRef] [PubMed]

16.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]

17.

N. Sangouard, C. Simon, J. Minář, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76, 050301 (2007). [CrossRef]

18.

I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecom wavelengths,” Nature 421, 509–513 (2003). [CrossRef] [PubMed]

19.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006). [CrossRef]

20.

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]

21.

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency conversion,” Opt. Lett. 29(13), 1449–1451 (2004). [CrossRef] [PubMed]

22.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. of Mod. Opt. 51, 1433–1445 (2004).

23.

R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003). [CrossRef]

24.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode single photon counting at telecom wavelengths,” App. Phys. Lett. 91, 201114 (2007).

25.

K.-D. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]

26.

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998). [CrossRef]

27.

J. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Advanced architectures for low-noise frequency conversion of quantum states using lithium niobate waveguides,” Boulder SPW poster (2009). http://photon.jqi.umd.edu/.

28.

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 20(17), 17758–17763 (2009). [CrossRef]

29.

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]

30.

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010). [CrossRef] [PubMed]

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Quantum Optics

History
Original Manuscript: June 25, 2010
Revised Manuscript: August 25, 2010
Manuscript Accepted: September 24, 2010
Published: October 4, 2010

Citation
Noé Curtz, Rob Thew, Christoph Simon, Nicolas Gisin, and Hugo Zbinden, "Coherent frequency-down-conversion interface for quantum repeaters," Opt. Express 18, 22099-22104 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics (3),165–171 (2007). [CrossRef]
  2. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high-speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]
  3. H.-J. Briegel, W. D¨ur, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998). [CrossRef]
  4. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,”(2009). arXiv:0906.2699.
  5. B. Lauritzen, J. Miná?, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010). [CrossRef] [PubMed]
  6. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef] [PubMed]
  7. I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1–7 (2010). [CrossRef]
  8. T. Chaneli`ere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2010). [CrossRef]
  9. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef] [PubMed]
  10. Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, “Entanglement demonstration of a BDCZ quantum repeater node,” Nature 454, 1098–1101 (2008). [CrossRef] [PubMed]
  11. S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, and C. Monroe, “Quantum teleportation between distant matter qubits,” Science 323(5913), 486–489 (2009). [CrossRef] [PubMed]
  12. W. Rosenfeld, S. Berner, J. Volz, M. Weber, and H. Weinfurter, “Remote preparation of an atomic quantum memory,” Phys. Rev. Lett. 98(5), 050504 (2007). [CrossRef] [PubMed]
  13. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005). [CrossRef] [PubMed]
  14. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]
  15. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008). [CrossRef] [PubMed]
  16. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]
  17. N. Sangouard, C. Simon, J. Miná?, H. Zbinden, H. de Riedmatten, and N. Gisin, “Long-distance entanglement distribution with single-photon sources,” Phys. Rev. A 76, 050301 (2007). [CrossRef]
  18. I. Marcikic, H. De Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecom wavelengths,” Nature 421, 509–513 (2003). [CrossRef] [PubMed]
  19. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” N. J. Phys. 8, 32 (2006). [CrossRef]
  20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13), 1725–1727 (2005). [CrossRef] [PubMed]
  21. M. A. Albota, and F. N. C. Wong, “Efficient single-photon counting at 1.55 mm by means of frequency conversion,” Opt. Lett. 29(13), 1449–1451 (2004). [CrossRef] [PubMed]
  22. A. P. VanDevender, and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  23. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003). [CrossRef]
  24. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
  25. K.-D. B¨uchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34(4), 470–472 (2009). [CrossRef] [PubMed]
  26. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998). [CrossRef]
  27. J. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Advanced architectures for low-noise frequency conversion of quantum states using lithium niobate waveguides,” Boulder SPW poster (2009). http://photon.jqi.umd.edu/.
  28. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 20(17), 17758–17763 (2009). [CrossRef]
  29. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010). [CrossRef]
  30. Y. Ding, and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35(15), 2591–2593 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited